Narrow your search
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Active inference : the free energy principle in mind, brain, and behavior
Authors: --- ---
ISBN: 0262369974 0262362287 0262045354 Year: 2022 Publisher: Cambridge, Massachusetts : The MIT Press,


Book
Principles of brain dynamics : global state interactions
Authors: --- ---
ISBN: 9780262017640 0262017644 9786613770271 1280998660 0262305585 9780262305587 9781280998669 6613770272 Year: 2012 Publisher: Cambridge, Mass. : MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity--perception, cognition, and emotion--because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.


Book
The pragmatic turn
Authors: --- ---
ISBN: 0262034328 0262333295 9780262333290 9780262034326 Year: 2015 Publisher: Cambridge, Massachusetts

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cognitive science is experiencing a pragmatic turn away from the traditional representation-centered framework toward a view that focuses on understanding cognition as 'enactive'. This enactive view holds that cognition does not produce models of the world but rather subserves action as it is grounded in sensorimotor skills. In this volume, experts from cognitive science, neuroscience, psychology, robotics, and philosophy of mind assess the foundations and implications of a novel action-oriented view of cognition.

Statistical parametric mapping
Authors: --- --- --- ---
ISBN: 9780123725608 0123725607 1493300954 9786610728992 128072899X 0080466508 9780080466507 6610728992 Year: 2007 Publisher: Amsterdam Boston Elsevier/Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to m

Statistical parametric mapping : the analysis of funtional brain images
Authors: --- --- --- ---
ISBN: 9780123725608 0123725607 9780080466507 0080466508 9786610728992 6610728992 Year: 2007 Publisher: Boston Elsevier/Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. * An essential reference and companion for users of the SPM software * Provides a complete description of the concepts and procedures entailed by the analysis of brain images * Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data * Stands as a compendium of all the advances in neuroimaging data analysis over the past decade * Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes * Structured treatment of data analysis issues that links different modalities and models * Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible.


Book
Attention, predictions and expectations and their violation : attentional control in the human brain
Authors: --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the burdened scenes of everyday life, our brains must select from among many competing inputs for perceptual synthesis - so that only the most relevant receive full attention and irrelevant (distracting) information is suppressed. At the same time, we must remain responsive to salient events outside our current focus of attention - and balancing these two processing modes is a fundamental task our brain constantly needs to solve. Both the physical saliency of a stimulus, as well as top-down predictions about imminent sensations crucially influence attentional selection and consequently the response to unexpected events. Research over recent decades has identified two separate brain networks involved in predictive top-down control and reorientation to unattended events (or oddball stimuli): the dorsal and ventral fronto-parietal attention systems of the human brain. Moreover, specific electrophysiological brain responses are known to characterize attentional orienting as well as the processing of deviant stimuli. However, many key questions are outstanding. What are the exact functional differences between these cortical attention systems? How are they lateralised in the two hemispheres? How do top-down and bottom-up signals interact to enable flexible attentional control? How does structural damage to one system affect the functionality of the other in brain damaged patients? Are there sensory-specific and supra-modal attentional systems in the brain? In addition to these questions, it is now accepted that brain responses are not only affected by the saliency of external stimuli, but also by our expectations about sensory inputs. How these two influences are balanced, and how predictions are formed in cortical networks, or generated on the basis of experience-dependent learning, are intriguing issues. In this Research Topic, we aim to collect innovative contributions that shed further light on the (cortical) mechanisms of attentional control in the human brain. In particular, we would like to encourage submissions that investigate the behavioural correlates, functional anatomy or electrophysiological markers of attentional selection and reorientation. Special emphasis will be given to studies investigating the context-sensitivity of these attentional processes in relation to prior expectations, trial history, contextual cues or physical saliency. We would like to encourage submissions employing different research methods (psychophysical recordings, neuroimaging techniques such as fMRI, MEG, EEG or ECoG, as well as neurostimulation methods such as TMS or tDCS) in healthy volunteers or neurological patients. Computational models and animal studies are also welcome. Finally, we also welcome submission of meta-analyses and reviews articles that provide new insights into, or conclusions about recent work in the field.


Book
Attention, predictions and expectations and their violation : attentional control in the human brain
Authors: --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the burdened scenes of everyday life, our brains must select from among many competing inputs for perceptual synthesis - so that only the most relevant receive full attention and irrelevant (distracting) information is suppressed. At the same time, we must remain responsive to salient events outside our current focus of attention - and balancing these two processing modes is a fundamental task our brain constantly needs to solve. Both the physical saliency of a stimulus, as well as top-down predictions about imminent sensations crucially influence attentional selection and consequently the response to unexpected events. Research over recent decades has identified two separate brain networks involved in predictive top-down control and reorientation to unattended events (or oddball stimuli): the dorsal and ventral fronto-parietal attention systems of the human brain. Moreover, specific electrophysiological brain responses are known to characterize attentional orienting as well as the processing of deviant stimuli. However, many key questions are outstanding. What are the exact functional differences between these cortical attention systems? How are they lateralised in the two hemispheres? How do top-down and bottom-up signals interact to enable flexible attentional control? How does structural damage to one system affect the functionality of the other in brain damaged patients? Are there sensory-specific and supra-modal attentional systems in the brain? In addition to these questions, it is now accepted that brain responses are not only affected by the saliency of external stimuli, but also by our expectations about sensory inputs. How these two influences are balanced, and how predictions are formed in cortical networks, or generated on the basis of experience-dependent learning, are intriguing issues. In this Research Topic, we aim to collect innovative contributions that shed further light on the (cortical) mechanisms of attentional control in the human brain. In particular, we would like to encourage submissions that investigate the behavioural correlates, functional anatomy or electrophysiological markers of attentional selection and reorientation. Special emphasis will be given to studies investigating the context-sensitivity of these attentional processes in relation to prior expectations, trial history, contextual cues or physical saliency. We would like to encourage submissions employing different research methods (psychophysical recordings, neuroimaging techniques such as fMRI, MEG, EEG or ECoG, as well as neurostimulation methods such as TMS or tDCS) in healthy volunteers or neurological patients. Computational models and animal studies are also welcome. Finally, we also welcome submission of meta-analyses and reviews articles that provide new insights into, or conclusions about recent work in the field.


Book
Attention, predictions and expectations and their violation : attentional control in the human brain
Authors: --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the burdened scenes of everyday life, our brains must select from among many competing inputs for perceptual synthesis - so that only the most relevant receive full attention and irrelevant (distracting) information is suppressed. At the same time, we must remain responsive to salient events outside our current focus of attention - and balancing these two processing modes is a fundamental task our brain constantly needs to solve. Both the physical saliency of a stimulus, as well as top-down predictions about imminent sensations crucially influence attentional selection and consequently the response to unexpected events. Research over recent decades has identified two separate brain networks involved in predictive top-down control and reorientation to unattended events (or oddball stimuli): the dorsal and ventral fronto-parietal attention systems of the human brain. Moreover, specific electrophysiological brain responses are known to characterize attentional orienting as well as the processing of deviant stimuli. However, many key questions are outstanding. What are the exact functional differences between these cortical attention systems? How are they lateralised in the two hemispheres? How do top-down and bottom-up signals interact to enable flexible attentional control? How does structural damage to one system affect the functionality of the other in brain damaged patients? Are there sensory-specific and supra-modal attentional systems in the brain? In addition to these questions, it is now accepted that brain responses are not only affected by the saliency of external stimuli, but also by our expectations about sensory inputs. How these two influences are balanced, and how predictions are formed in cortical networks, or generated on the basis of experience-dependent learning, are intriguing issues. In this Research Topic, we aim to collect innovative contributions that shed further light on the (cortical) mechanisms of attentional control in the human brain. In particular, we would like to encourage submissions that investigate the behavioural correlates, functional anatomy or electrophysiological markers of attentional selection and reorientation. Special emphasis will be given to studies investigating the context-sensitivity of these attentional processes in relation to prior expectations, trial history, contextual cues or physical saliency. We would like to encourage submissions employing different research methods (psychophysical recordings, neuroimaging techniques such as fMRI, MEG, EEG or ECoG, as well as neurostimulation methods such as TMS or tDCS) in healthy volunteers or neurological patients. Computational models and animal studies are also welcome. Finally, we also welcome submission of meta-analyses and reviews articles that provide new insights into, or conclusions about recent work in the field.


Book
Organic Computing
Authors: --- --- --- --- --- et al.
ISBN: 9783540776574 Year: 2008 Publisher: Berlin, Heidelberg Springer Berlin Heidelberg

Loading...
Export citation

Choose an application

Bookmark

Abstract

Organic Computing is a research field emerging around the conviction that problems of organization in complex systems in computer science, telecommunications, neurobiology, molecular biology, ethology, and possibly even sociology can be tackled scientifically in a unified way. From the computer science point of view, the apparent ease in which living systems solve computationally difficult problems makes it inevitable to adopt strategies observed in nature for creating information processing machinery. In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.

Listing 1 - 10 of 11 << page
of 2
>>
Sort by