Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Choose an application
This monograph presents the geoscientific context arising in decorrelative gravitational exploration to determine the mass density distribution inside the Earth. First, an insight into the current state of research is given by reducing gravimetry to mathematically accessible, and thus calculable, decorrelated models. In this way, the various unresolved questions and problems of gravimetry are made available to a broad scientific audience and the exploration industry. New theoretical developments will be given, and innovative ways of modeling geologic layers and faults by mollifier regularization techniques are shown. This book is dedicated to surface as well as volume geology with potential data primarily of terrestrial origin. For deep geology, the geomathematical decorrelation methods are to be designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Bridging several different geo-disciplines, this book leads in a cycle from the potential measurements made by geoengineers, to the cleansing of data by geophysicists and geoengineers, to the subsequent theory and model formation, computer-based implementation, and numerical calculation and simulations made by geomathematicians, to interpretation by geologists, and, if necessary, back. It therefore spans the spectrum from geoengineering, especially geodesy, via geophysics to geomathematics and geology, and back. Using the German Saarland area for methodological tests, important new fields of application are opened, particularly for regions with mining-related cavities or dense development in today's geo-exploration. .
Differential equations --- Numerical analysis --- Mathematics --- Geophysics --- Geology. Earth sciences --- Physical geography --- zwaartekracht --- differentiaalvergelijkingen --- Laplacetransformatie --- wiskunde --- geologie --- fysische geografie --- aarde (astronomie) --- numerieke analyse
Choose an application
Choose an application
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
Algebraic geometry --- Harmonic analysis. Fourier analysis --- Partial differential equations --- Differential equations --- Mathematical analysis --- Mathematics --- Mathematical physics --- Geophysics --- Meteorology. Climatology --- Physical geography --- differentiaalvergelijkingen --- analyse (wiskunde) --- Fourierreeksen --- functies (wiskunde) --- mathematische modellen --- klimatologie --- wiskunde --- fysica --- meteorologie --- fysische geografie --- geofysica
Choose an application
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Mathematics --- toegepaste wiskunde --- wiskunde
Choose an application
Choose an application
Numerical analysis --- Mathematics --- Geophysics --- Planning (firm) --- mathematische modellen --- wiskunde --- geofysica --- numerieke analyse
Choose an application
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Mathematics. --- Geophysics. --- Harmonic analysis. --- Partial differential equations. --- Abstract Harmonic Analysis. --- Geophysics/Geodesy. --- Partial Differential Equations. --- Geodesy --- Physical geography. --- Differential equations, partial. --- Partial differential equations --- Geography --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Geological physics --- Terrestrial physics --- Earth sciences --- Physics
Choose an application
Differential equations --- Numerical analysis --- Mathematics --- Geophysics --- Geology. Earth sciences --- Physical geography --- zwaartekracht --- differentiaalvergelijkingen --- Laplacetransformatie --- wiskunde --- geologie --- fysische geografie --- aarde (astronomie) --- numerieke analyse
Choose an application
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Harmonic analysis. Fourier analysis --- Partial differential equations --- Differential equations --- Mathematical analysis --- Geophysics --- Physical geography --- differentiaalvergelijkingen --- analyse (wiskunde) --- Fourierreeksen --- mathematische modellen --- wiskunde --- fysische geografie --- geofysica
Listing 1 - 10 of 28 | << page >> |
Sort by
|