Listing 1 - 10 of 74 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Oxygen reduction electro catalysis is an important research field in a lot of energy storage and converting devices, especially for fuel cells. However, replacing noble metal based electrocatalystes with highly efficient and inexpensive non-noble metal-based oxygen electrocatalystes is critical for the practical applications. M-Nx-C was believed to be the most promising substitute catalyst for oxygen reduction reaction (ORR). In this work, a porous nitrogen-doped carbon materials derived from metal organic frameworks (MOFs). [Ni(HBTC)(DMF)2∙(guest)] (HBTC = 1,3,5-benzenetricarboxylic acid DMF = N,N’-dimethylamine), Ni(HBTC)(dipy)2∙3(DMF) (dipy = 4,4’-dipyridyl) were first time successfully synthesized by anodic deposition method. The metal organic frameworks were characterized by scanning electron microscopy and X-ray diffraction, and were pyrolyzed at 700 0C in nitrogen atmosphere to get the porous carbon materials. The oxygen reduction reaction (ORR) was studied in 0.1 M KOH on glassy carbon electrodes modified with N-doped carbon material electrocatalysts obtained after pyrolysis. The cyclic voltammograms (CV) curves indicated that these metal-free nitrogen-doped nanocarbon catalysts possess comparable electrocatalytic activity towards the ORR in alkaline media to that of commercial Pt/C catalyst. In methanol tolerance test, the obtained carbon materials showed a quite stable catalytic activity with methanol in the electrolyte. Conversely, the performance of Pt/C catalysts shifted a lot due to the oxidation of methanol on the active site. The electrochemical properties of the MOFs derived carbon materials are mainly attributed to the synergistic effect from chemical compositions and the porous structure composed of interconnected crystalline nitrogen-doped carbon materials. The results obtained in this work are particularly important for the development of non-Pt cathode catalysts for fuel cells.
Choose an application
Choose an application
Global energy consumption is rapidly increasing due to industrial and economic development. The large consumption of fossil fuels causes problems such as environmental pollution and energy shortage. Hence, the development and deployment of alternative clean and renewable energy sources, such as solar, wind, and hydro energies are urgently needed. Hydrogen is a good energy carrier due to its high energy density on a per weight basis (33.6 kWh kg-1) and zero carbon emission, which can react with oxygen to produce water and releases the stored energy. Electrochemical water splitting has been considered as a good strategy for hydrogen production. It consists of the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. However, the sluggish kinetics of OER significantly limits the overall energy conversion efficiency of the water splitting. Therefore, it is highly desirable and challenging to develop durable and efficient electrocatalysts for OER composed of earth-abundant elements. In this project, a serial of nickel and cobalt-based materials with proper electronic structures were developed to boost the OER activities in alkaline media. The experimental and theoretical study gave new insights into the activity enhancement mechanisms. The proposed methods to create high-valence cations and heteroatom doping strategies can further applied for the design of high-performance electrocatalysts for low-cost energy storage and conversion systems.
Choose an application
With the development of modern society, the increasing consumption of fossil fuels highly aggravate the global energy crisis. Therefore, it is urgent to expand high-effectiveness energy storage devices to meet the growing requirement of market and industry, especially for hybrid electric vehicles. Herein, supercapacitors are considered as a promising device to continually offer energy output since its high specific capacitances and widely working temperature etc. In this case, porous carbon is always selected as the electrode of supercapacitors since it enjoys a series of properties, including tunable morphology, high catalysis efficiency and sprightly chemical performance. Metal organic frameworks (MOFs) are ideal template to produce porous carbon due to their high surface area and controllable size distribution. In order to build up the electrode, porous carbon need to be mixed with polymeric binder then further be pressed onto the current collector. Unfortunately, the existence of binder will largely increase the resistance then further reduce the capacitance of the produced electrode. Hence the investigation of high-performance binder-free electrode for supercapacitors draw public’s attention in recent years. However, the amount of information on binder-free porous carbon matrix electrode for supercapacitors derived from MOFs is still rare. In this thesis, the MOFs-derived binder-free carbon matrix electrode for supercapacitors are successfully prepared. By adjusting the ratio of zinc ions, organic linker and modulating ligands, a series of zinc-2-methylimidazole (ZIF-8) with different particles size are successfully synthesized via room-temperature synthesis method. In order to build up the binder-free electrode, ZIF-8 particles are deposited onto a 3D-electrode (i.e. nickel foam) by electrophoretic deposition (EPD). Moreover, the sufficiently penetration of ZIF-8 into nickel foam, the thickness of deposition layer and the effect of deposition voltage and deposition time of EPD were explored. Besides, in order to prove the widely potential applications of our strategies, core-shell structured ZIF-67@ZIF-8 was synthesized and deposited on nickel foam by EPD, suggesting EPD can be used as a universal method to prepare MOF-derived binder-free electrode. By carbonization, the MOF-covered electrode was convert to porous carbon matrix electrode, which are used as the electrode for supercapacitors. The binder-free electrode shows high specific capacitances (140 F/g at a voltage scan rate of 300 mV/s), low charge transfer resistance (0.025 Ω) and large specific energy (10.2 Wh/kg at a specific power of 1750 W/kg), while the binder-containing electrode presents low specific capacitances (24 F/g at a voltage scan rate of 300 mV/s), high charge transfer resistance (0.91 Ω) and low specific energy (7.1 Wh/kg at a specific power of 1750 W/kg). The superb properties of binder-free carbon matrix electrode for supercapacitors ensure its practical use in the field of energy storage, electric devices and public transportation.
Choose an application
Abstract New liquid cobalt salts were synthesized and characterized during this master thesis. In order to synthesize these liquid cobalt salts, cobalt(II) was coordinated by neutral ligands and combined with weakly coordinating anions. Different types of neutral ligands were used. The most important ones were 1-alkylimidazoles with a varying alkyl chain length from C1 to C12, amides (N,N-dimethylacetamide, 1-ethyl-2-pyrrolidone) and diamines (1,10-phenantroline). Two different anions were used: bis(trifluoromethylsulfonyl)imide (bistriflimide, Tf2N-) and methanesulfonate (mesylate, OMs-). Bistriflimide was the most appropriate anion since the liquid cobalt salts with this anion had the lowest melting points and viscosities. Complexes with many different ligands and bistriflimide or mesylate anions were synthesized and characterized with CHN, DSC, IR, viscometry, XRD. One of the goals of this thesis was to investigate the influence of the alkyl chain length of the 1-alkylimidazole ligands on the melting point of [Co(AlkIm)6][Tf2N]2- and [Co(AlkIm)6][OMs]2-complexes A general trend can be observed for the melting points of the [Co(AlkIm)6][Tf2N]2-complexes. The melting points first decrease in the series (C1 to C8) because as the alkyl chain on the ligand becomes longer, the crystal packing becomes less compact and the cation-anion interactions become weaker. If the alkyl chains becomes even longer, the melting point increases again due to the Van der Waals interactions between those chains. A second trend that is observed is an alternating odd-even effect for the melting points of the [Co(AlkIm)6][Tf2N]2- and [Co(AlkIm)6][OMs]2-complexes. The complexes with odd-numbered alkyl chains systematically have a lower melting point than the complexes with even-numbered alkyl chains. For instance, the complexes with 1-propylimidazole ligands have a significantly lower melting point than the complexes with 1-ethylimidazole and1-butylimidazole ligands. For the [Co(AlkIm)6][Tf2N]2-complexes, the odd-even effect fades out at higher chain lengths. The liquid cobalt salts with the lowest melting points and viscosities were characterized with electrochemical methods. The possibility to deposit cobalt layers from these liquid cobalt salts was investigated as well as the reversibility of the Co(II)/Co(III) couple to test their potential use as electrolytes in redox flow batteries. Two liquid cobalt salts with amide ligands were characterized: [Co(NEP)6][Tf2N]2 and [Co(DMAc)6][Tf2N]2. It was possible to deposit smooth and homogeneous thick cobalt layers from these electrolytes. However, it was not possible to oxidize Co(II) to Co(III). Instead, the anodic decomposition of the ligand or anion was observed. Three liquid cobalt salts with 1-alkylimidazole ligands were characterized: [Co(PrIm)6][Tf2N]2, [Co(HeIm)6][Tf2N]2 and [Co(DoIm)6][Tf2N]2. It was possible to reduce Co(II) to Co(0) but only very thin and inhomogeneous cobalt layers could be obtained from these electrolytes. Instead, most of the cathodic current was used to form cobalt nanoparticles, which was verified by TEM experiments It was not possible to observe the Co(II)/Co(III) couple in [Co(HeIm)6][Tf2N]2 and [Co(DoIm)6][Tf2N]2. In [Co(PrIm)6][Tf2N]2, Co(II)/Co(III) couple could be observed but it was only partially reversible.
Choose an application
We leven in een wereld die evolueert naar een meer duurzame wereld, zaken zoals hernieuwbare energie, elektrische auto's, reductie van CO2 emissies, etc. zijn maar enkele voorbeelden van de uitdagingen die wetenschappers zullen moeten aangaan. Eén van de grootste uitdagingen is de zoektocht naar een efficiënte manier om elektrische energie op te slagen in batterijsystemen. In die context zijn lithium-ion-batterijen een veelbelovende oplossing. Er is echter nog veel ruimte voor verbetering en voortuitgang en hopelijk kan deze master thesis bijdrage tot betere inzichten in het elektrodepositieproces van lithium, voor het gebruik in lithium-ion-batterijen.Elektrodepositie wordt aanschouwd als een goedkope en makkelijke techniek om lagen van een bepaald materiaal af te zetten met behulp van elektrische stroom. In de industrie worden metalen zoals chroom, nikkel, koper, goud, etc. afgezet vanuit waterige oplossingen. Helaas zijn het aantal elementen dat vanuit waterige oplossing kan worden afgezet beperkt. Daarom worden andere elektrolytoplossingen gebruikt, zoals organische solventen of ionische vloeistoffen, om metalen zoals lithium af te zetten met behulp van elektrodepositie. Vooral ionische vloeistoffen blijken een interessant, deze vloeistoffen bestaan volledig uit geladen deeltjes (ionen) en hebben enkele bijzondere eigenschappen.Recent was er een doorbraak in het domein van elektrodepositie vanuit ionische vloeistoffen. Een nieuw soort ionische vloeistoffen is ontwikkeld, nl. vloeibare metaalzouten, die in staat zijn om elektrodeposities uit te voeren met een hoge stroomdichtheid. De sleutel tot het succes van vloeibare metaalzouten was het inbrengen van het metaal kation in de kation (en/of anion) structuur van de ionische vloeistof.Het voordeel van deze incorporatie is dat de metaalconcentratie enorm kan worden verhoogd en dat de reductie van het metaalkation uit vloeibare metaalzouten eigenlijk betekent dat het elektrolyt wordt afgebroken. In andere woord...
Choose an application
Choose an application
Ionische vloeistoffen (ILs) zijn solventen die volledig uit ionen bestaan en een smeltpunt hebben beneden 100 °C. Ze zijn opgebouwd uit omvangrijke organische of anorganische kationen, gecombineerd met zwak coördinerende anionen. Transitiemetalen kunnen geïncorporeerd worden in zowel het kation als het anion. Wanneer een transitiemetaal is ingebouwd in het kation, spreken we over vloeibare metaalzouten. Het hoofddoel van deze masterproef was het synthetiseren en karakteriseren van nieuwe vloeibare metaalzouten met nikkel(II) als transitiemetaalion. Om het nikkel(II)-kation te stabiliseren werden verscheidene liganden toegevoegd: 1-alkylimidazolen (waarbij de lengte van de koolstofketen gevarieerd werd van C1 tot C12), sulfoxides (dimethylsulfoxide en di-n-butylsulfoxide) en glycol methylethers zijn de belangrijkste liganden die werden gebruikt. Ook de anionen werden gevarieerd. Het meest gebruikte anion was bis(trifluormethylsulfonyl)imide (bistriflimide) aangezien het zwak coördinerend is. Andere gebruikte anionen waren trifluormethaansulfonaat (triflaat), methaansulfonaat (mesylaat), tetrafluoroboraat (BF4-) en nitraat (NO3-). Verschillende combinaties werden gesynthetiseerd en gekarakteriseerd (CHN, DSC, IR, NMR, viscositeit, XRD,...) om uiteindelijk vloeibare nikkel-zouten te bekomen die gebruikt kunnen worden voor elektrodepositie. Een algemene trend kan waargenomen worden wanneer de smeltpunten binnen de [Ni(AlkIm)6][Tf2N]2 serie onderzocht wordt. Een daling van het smeltpunt wordt waargenomen tussen 1-methylimidazool en 1-pentylimidazool tot het complex vloeibaar wordt. Vanaf 1-heptylimidazool stijgt het smeltpunt weer omwille van de Van der Waals interacties die optreden tussen de alkylketens. Een oneven-even effect wordt waargenomen wanneer de verschillende smeltpunten bestudeerd worden. Het is opmerkelijk dat complexen met een oneven aantal koolstofatomen systematisch een lager smeltpunt hebben dan de complexen met een even aantal koolstofatomen. Een voorbeeld hiervan kan teruggevonden worden binnen de [Ni(AlkIm)6][Tf2N]2 serie voor de ketenlengtes C2 tot C4 (Tm, ethyl > Tm, propyl < Tm, butyl) en C8 tot C10 (Tm, octyl > Tm, nonyl < Tm, decyl). Hetzelfde effect wordt ook waargenomen wanneer de dynamische viscositeit geanalyseerd wordt. Deze alterneert over de ganse serie (C3 tot C10) waarbij de maxima gesitueerd zijn bij complexen met een oneven aantal koolstofatomen. Twee complexen werden gebruikt voor elektrochemisch onderzoek: [Ni(HeIm)6][Tf2N]2 en [Ni(DoIm)6][Tf2N]2. Wanneer de resultaten van cyclische voltammetrie experimenten op het eerste complex worden bestudeerd, werd tot de conclusie gekomen dat er mogelijk nanodeeltjes gevormd worden. Voor het tweede complex werden gelijkaardige vaststellingen gedaan en met behulp van een TEM meting werd dit vermoeden bewezen.
Listing 1 - 10 of 74 | << page >> |
Sort by
|