Listing 1 - 10 of 10 |
Sort by
|
Choose an application
This collection presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare extraction processing techniques used in metal production. The collection covers the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. It also includes rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Rare metal processing covers bio-metallurgy, hydro-metallurgy, and electro-metallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are also addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies. .
Metals. --- Building materials. --- Materials --- Energy storage. --- Renewable energy sources. --- Steel, Light Metal. --- Metals and Alloys. --- Materials Characterization Technique. --- Mechanical and Thermal Energy Storage. --- Renewable Energy. --- Analysis. --- Nonferrous metals --- Metallurgy.
Choose an application
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Rare metals include strategic metals that are in increasing demand and subject to supply risks. Metals represented include neodymium, dysprosium, scandium and others; platinum group metals including platinum, palladium, iridium, and others; battery related metals including lithium, cobalt, nickel, and aluminum; electronics-related materials including copper and gold; and refectory metals including titanium, niobium, zirconium, and hafnium. Other critical materials such as gallium, germanium, indium and silicon are also included. Papers cover various processing techniques, including but not limited to hydrometallurgy (solvent extraction, ion exchange, precipitation, and crystallization), electrometallurgy (electrorefining and electrowinning), pyrometallurgy, and aeriometallurgy (supercritical fluid extraction). Contributions are focused on primary production as well as secondary production through urban mining and recycling to enable a circular economy. A useful resource for all involved in commodity metal production, irrespective of the major metal Provides knowledge of cross-application among industries Extraction and processing of rare metals that are the main building block of many emerging critical technologies have been receiving significant attention in recent years. The technologies that rely on critical metals are prominent worldwide, and finding a way to extract and supply them effectively is highly desirable and beneficial.
Metals. --- Materials science. --- Organometallic chemistry . --- Engineering—Materials. --- Metallic Materials. --- Characterization and Evaluation of Materials. --- Organometallic Chemistry. --- Materials Engineering. --- Chemistry, Organometallic --- Metallo-organic chemistry --- Chemistry, Organic --- Material science --- Physical sciences --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Extraction (Chemistry) --- Metalls de terres rares --- Extracció (Química) --- Difusió --- Separació (Tecnologia) --- Solucions (Química) --- Química industrial --- Extracció per fluids supercrítics --- Lantànids --- Metalls no ferrosos --- Ceri (Element químic) --- Itri --- Neodimi --- Terbi --- Terres rares --- Organometallic chemistry.
Choose an application
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. It covers metals essential for critical modern technologies including electronics, electric motors, generators, energy storage systems, and specialty alloys. Rare metals are the main building blocks of many emerging critical technologies and have been receiving significant attention in recent years. Much research in academia and industry is devoted to finding novel techniques to extract critical and rare metals from primary and secondary sources. The technologies that rely on critical metals are dominating the world, and finding a way to extract and supply them effectively is highly desirable and beneficial. Rapid development of these technologies entails fast advancement of the resource and processing industry for their building materials. Authors from academia and industry exchange knowledge on developing, operating, and advancing extractive and processing technologies. Contributions cover rare-earth elements (magnets, catalysts, phosphors, and others), energy storage materials (lithium, cobalt, vanadium, graphite), alloy elements (scandium, niobium, titanium), and materials for electronics (gallium, germanium, indium, gold, silver). The contributions also cover various processing techniques in mineral beneficiation, hydrometallurgy, separation and purification, pyrometallurgy, electrometallurgy, supercritical fluid extraction, and recycling (batteries, magnets, electrical and electronic equipment). .
Structural materials. --- Chemistry. --- Geology. --- Natural resources. --- Structural Materials. --- Chemistry/Food Science, general. --- Natural Resource and Energy Economics. --- National resources --- Natural resources --- Resources, Natural --- Resource-based communities --- Resource curse --- Geognosy --- Geoscience --- Earth sciences --- Natural history --- Physical sciences --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials --- Materials --- Economic aspects --- Nonferrous metals. --- Rare metals --- Metals
Choose an application
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Rare metals include strategic metals that are in increasing demand and subject to supply risks. Metals represented include neodymium, dysprosium, scandium and others; platinum group metals including platinum, palladium, iridium, and others; battery related metals including lithium, cobalt, nickel, and aluminum; electronics-related materials including copper and gold; and refectory metals including titanium, niobium, zirconium, and hafnium. Other critical materials such as gallium, germanium, indium and silicon are also included. Papers cover various processing techniques, including but not limited to hydrometallurgy (solvent extraction, ion exchange, precipitation, and crystallization), electrometallurgy (electrorefining and electrowinning), pyrometallurgy, and aeriometallurgy (supercritical fluid extraction). Contributions are focused on primary production as well as secondary production through urban mining and recycling to enable a circular economy. A useful resource for all involved in commodity metal production, irrespective of the major metal Provides knowledge of cross-application among industries Extraction and processing of rare metals that are the main building block of many emerging critical technologies have been receiving significant attention in recent years. The technologies that rely on critical metals are prominent worldwide, and finding a way to extract and supply them effectively is highly desirable and beneficial.
Descriptive organic chemistry --- Materials sciences --- Metallurgy --- materiaalkennis --- organometalische verbindingen --- metalen
Choose an application
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. It covers metals essential for critical modern technologies including electronics, electric motors, generators, energy storage systems, and specialty alloys. Rare metals are the main building blocks of many emerging critical technologies and have been receiving significant attention in recent years. Much research in academia and industry is devoted to finding novel techniques to extract critical and rare metals from primary and secondary sources. The technologies that rely on critical metals are dominating the world, and finding a way to extract and supply them effectively is highly desirable and beneficial. Rapid development of these technologies entails fast advancement of the resource and processing industry for their building materials. Authors from academia and industry exchange knowledge on developing, operating, and advancing extractive and processing technologies. Contributions cover rare-earth elements (magnets, catalysts, phosphors, and others), energy storage materials (lithium, cobalt, vanadium, graphite), alloy elements (scandium, niobium, titanium), and materials for electronics (gallium, germanium, indium, gold, silver). The contributions also cover various processing techniques in mineral beneficiation, hydrometallurgy, separation and purification, pyrometallurgy, electrometallurgy, supercritical fluid extraction, and recycling (batteries, magnets, electrical and electronic equipment). .
Chemistry --- Geology. Earth sciences --- Relation between energy and economics --- Applied physical engineering --- Metallurgy --- chemie --- geologie --- metalen --- natuurlijke energiebronnen
Choose an application
This collection presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare extraction processing techniques used in metal production. Authors cover the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. Contributions also discuss rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Authors also cover biometallurgy, hydrometallurgy, and electrometallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies.
Rocks. Minerals --- Applied physical engineering --- Metallurgy --- mineralogie --- metalen
Choose an application
This volume presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare extraction processing techniques used in metal production. The collection covers the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. It also includes rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Rare metal processing covers biometallurgy, hydrometallurgy, and electrometallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are also addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies. .
Metals. --- Materials. --- Mineralogy. --- Mining engineering. --- Metals and Alloys. --- Metal-organic Frameworks. --- Mining and Exploration.
Choose an application
Rare earth metals. --- Nonferrous metals. --- Nonferrous metals --- Metallurgy. --- Rare metals --- Metals --- Lanthanide series --- Lanthanides --- Lanthanoid series --- Lanthanons --- Rare earth elements
Choose an application
This collection presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare metals extraction processing techniques used in metal production. The collection covers the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. It also includes rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Rare metal processing covers bio-metallurgy, hydro-metallurgy, and electro-metallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are also addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies.
Electromagnetism. Ferromagnetism --- Thermal properties of solids --- Solid state physics --- Applied physical engineering --- Metallurgy --- supergeleiding --- vaste stof --- materie (fysica) --- metalen --- magnetisme
Choose an application
Relation between energy and economics --- Electrical engineering --- Applied physical engineering --- Metallurgy --- Building materials. Building technology --- energie-economie --- elektrische netwerken --- hernieuwbare energie --- energie (technologie) --- bouwmaterialen --- metalen --- elektriciteitsdistributie
Listing 1 - 10 of 10 |
Sort by
|