Narrow your search

Library

KU Leuven (3)

ULiège (3)

Vlaams Parlement (3)

FARO (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2021 (4)

2020 (6)

Listing 1 - 10 of 10
Sort by

Book
Natural Fibres and their Composites
Author:
ISBN: 3036501649 3036501657 Year: 2021 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Natural Fiber-Reinforced Hybrid Composites
Author:
ISBN: 3039281550 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Natural Fiber-Reinforced Hybrid Composites
Author:
Year: 2020 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few decades, natural fibers have received growing attention as an alternative to the synthetic fibers used in the reinforcement of polymeric composites, thanks to their specific properties, low price, health advantages, renewability, and recyclability. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. As is widely known, natural fibers also possess some drawbacks, e.g., a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption, low aging resistance, etc. This implies that their applications are limited to non-structural interior products. To overcome this problem, the hybridization of natural fibers with synthetic ones (i.e., glass, carbon, and basalt) or different natural fibers can be a solution. For this reason, extensive research concerning natural-synthetic and natural-natural hybrid composites has been done in the last years. In this context, this book aims to collect some interesting papers concerning the use of natural fibers together with synthetic ones with the aim of obtaining hybrid structures with good compromise between high properties (e.g., mechanical performances, thermal behavior, aging tolerance in humid or aggressive environments, and so on) and environment care.


Book
Natural Fibres and their Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.


Book
Natural Fibres and their Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.


Book
Natural fiber-reinforced hybrid composites
Author:
Year: 2020 Publisher: [Place of publication not identified] : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few decades, natural fibers have received growing attention as an alternative to the synthetic fibers used in the reinforcement of polymeric composites, thanks to their specific properties, low price, health advantages, renewability, and recyclability. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. As is widely known, natural fibers also possess some drawbacks, e.g., a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption, low aging resistance, etc. This implies that their applications are limited to non-structural interior products. To overcome this problem, the hybridization of natural fibers with synthetic ones (i.e., glass, carbon, and basalt) or different natural fibers can be a solution. For this reason, extensive research concerning natural-synthetic and natural-natural hybrid composites has been done in the last years. In this context, this book aims to collect some interesting papers concerning the use of natural fibers together with synthetic ones with the aim of obtaining hybrid structures with good compromise between high properties (e.g., mechanical performances, thermal behavior, aging tolerance in humid or aggressive environments, and so on) and environment care.


Book
Natural Fiber-Reinforced Hybrid Composites
Author:
Year: 2020 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few decades, natural fibers have received growing attention as an alternative to the synthetic fibers used in the reinforcement of polymeric composites, thanks to their specific properties, low price, health advantages, renewability, and recyclability. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. As is widely known, natural fibers also possess some drawbacks, e.g., a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption, low aging resistance, etc. This implies that their applications are limited to non-structural interior products. To overcome this problem, the hybridization of natural fibers with synthetic ones (i.e., glass, carbon, and basalt) or different natural fibers can be a solution. For this reason, extensive research concerning natural-synthetic and natural-natural hybrid composites has been done in the last years. In this context, this book aims to collect some interesting papers concerning the use of natural fibers together with synthetic ones with the aim of obtaining hybrid structures with good compromise between high properties (e.g., mechanical performances, thermal behavior, aging tolerance in humid or aggressive environments, and so on) and environment care.


Book
Natural Fibres and their Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.

Keywords

Research & information: general --- flax FRP --- basalt FRP --- glass FRP --- wood beam --- bending --- hybrid FRP --- flax fiber --- nano-clay --- water uptake --- hygrothermal properties --- coaxial electrospinning --- length of straight fluid jet --- spreading angle --- nanoribbons --- linear relationship --- curaua fibers --- graphene oxide coating --- epoxy composites --- ballistic performance --- recycled cotton fibers --- stiffness --- micromechanics --- Young's modulus --- polymer matrix composites --- flax fibers --- surface treatments --- adhesion --- polymer-matrix composites (PMCs) --- composite laminates --- low-velocity impact --- delamination --- X-ray micro CT --- polypropylene --- basalt fibers --- composite laminate --- flexural --- impact damage --- dog wool fibers --- fillers --- polyurethane --- eco-composites --- renewable resources --- poly(lactic acid) --- poly(butylene succinate) --- plasticizer migration --- diffusion --- natural fibre composites --- mechanical properties --- elastic behaviour --- viscous response --- empty fruit bunch fiber (EFB) --- polybutylene succinate (PBS) --- starch --- glycerol --- characterizations --- biocomposite --- polymer Blends --- Mopa-Mopa resin --- biobased composite --- fique fibers --- wood-plastic --- leather waste --- thermoplastic starch --- mechanical characterization --- thermal characterization --- flax FRP --- basalt FRP --- glass FRP --- wood beam --- bending --- hybrid FRP --- flax fiber --- nano-clay --- water uptake --- hygrothermal properties --- coaxial electrospinning --- length of straight fluid jet --- spreading angle --- nanoribbons --- linear relationship --- curaua fibers --- graphene oxide coating --- epoxy composites --- ballistic performance --- recycled cotton fibers --- stiffness --- micromechanics --- Young's modulus --- polymer matrix composites --- flax fibers --- surface treatments --- adhesion --- polymer-matrix composites (PMCs) --- composite laminates --- low-velocity impact --- delamination --- X-ray micro CT --- polypropylene --- basalt fibers --- composite laminate --- flexural --- impact damage --- dog wool fibers --- fillers --- polyurethane --- eco-composites --- renewable resources --- poly(lactic acid) --- poly(butylene succinate) --- plasticizer migration --- diffusion --- natural fibre composites --- mechanical properties --- elastic behaviour --- viscous response --- empty fruit bunch fiber (EFB) --- polybutylene succinate (PBS) --- starch --- glycerol --- characterizations --- biocomposite --- polymer Blends --- Mopa-Mopa resin --- biobased composite --- fique fibers --- wood-plastic --- leather waste --- thermoplastic starch --- mechanical characterization --- thermal characterization


Book
Natural fiber-reinforced hybrid composites
Author:
Year: 2020 Publisher: [Place of publication not identified] : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few decades, natural fibers have received growing attention as an alternative to the synthetic fibers used in the reinforcement of polymeric composites, thanks to their specific properties, low price, health advantages, renewability, and recyclability. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. As is widely known, natural fibers also possess some drawbacks, e.g., a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption, low aging resistance, etc. This implies that their applications are limited to non-structural interior products. To overcome this problem, the hybridization of natural fibers with synthetic ones (i.e., glass, carbon, and basalt) or different natural fibers can be a solution. For this reason, extensive research concerning natural-synthetic and natural-natural hybrid composites has been done in the last years. In this context, this book aims to collect some interesting papers concerning the use of natural fibers together with synthetic ones with the aim of obtaining hybrid structures with good compromise between high properties (e.g., mechanical performances, thermal behavior, aging tolerance in humid or aggressive environments, and so on) and environment care.


Book
Natural Fiber-Reinforced Hybrid Composites
Author:
Year: 2020 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last few decades, natural fibers have received growing attention as an alternative to the synthetic fibers used in the reinforcement of polymeric composites, thanks to their specific properties, low price, health advantages, renewability, and recyclability. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. As is widely known, natural fibers also possess some drawbacks, e.g., a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption, low aging resistance, etc. This implies that their applications are limited to non-structural interior products. To overcome this problem, the hybridization of natural fibers with synthetic ones (i.e., glass, carbon, and basalt) or different natural fibers can be a solution. For this reason, extensive research concerning natural-synthetic and natural-natural hybrid composites has been done in the last years. In this context, this book aims to collect some interesting papers concerning the use of natural fibers together with synthetic ones with the aim of obtaining hybrid structures with good compromise between high properties (e.g., mechanical performances, thermal behavior, aging tolerance in humid or aggressive environments, and so on) and environment care.

Listing 1 - 10 of 10
Sort by