Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Field theory (Physics). --- Global analysis. --- Mathematics. --- Quantum field theory. --- Quantum theory. --- Mathematics --- Physics --- Physical Sciences & Mathematics --- Geometry --- Atomic Physics --- Quantum gravity. --- Gravity, Quantum --- Relativistic quantum field theory --- Algebra. --- Global analysis (Mathematics). --- Manifolds (Mathematics). --- Global Analysis and Analysis on Manifolds. --- Field Theory and Polynomials. --- General relativity (Physics) --- Gravitation --- Quantum theory --- Field theory (Physics) --- Relativity (Physics) --- Classical field theory --- Continuum physics --- Continuum mechanics --- Mathematical analysis --- Geometry, Differential --- Topology --- Analysis, Global (Mathematics) --- Differential topology --- Functions of complex variables --- Geometry, Algebraic
Choose an application
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students entering the field, and is furthermore a valuable reference work for researchers in quantum field theory and quantum gravity.
Physics. --- Mathematical physics. --- Quantum field theory. --- String theory. --- Elementary particles (Physics). --- Quantum Field Theories, String Theory. --- Elementary Particles, Quantum Field Theory. --- Mathematical Physics. --- Field theory (Physics) --- Classical field theory --- Continuum physics --- Physics --- Continuum mechanics --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Mechanics --- Thermodynamics --- Physical mathematics --- Elementary particles (Physics) --- High energy physics --- Nuclear particles --- Nucleons --- Nuclear physics --- Models, String --- String theory --- Nuclear reactions --- Relativistic quantum field theory --- Quantum theory --- Relativity (Physics) --- Mathematics
Choose an application
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students entering the field, and is furthermore a valuable reference work for researchers in quantum field theory and quantum gravity.
Mathematical physics --- Quantum mechanics. Quantumfield theory --- Elementary particles --- Physics --- elementaire deeltjes --- kwantumleer --- wiskunde --- fysica
Choose an application
Geometry, Differential. --- Differential topology. --- Géométrie différentielle. --- Topologie différentielle. --- Fermions. --- Quantum theory. --- Geometry, Differential --- Fermions --- Quantum theory --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Fermi-Dirac particles --- Particles (Nuclear physics) --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics) --- Differential geometry
Choose an application
Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.
Fermions. --- Continuum mechanics. --- Field theory (Physics)
Choose an application
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Applied Physics --- Operations Research --- Engineering & Applied Sciences --- Civil & Environmental Engineering --- Quantum logic --- Mathematical physics --- Algebraic logic --- Quantum theory --- Mathematical Physics. --- Theoretical, Mathematical and Computational Physics. --- Mathematical physics. --- Physical mathematics --- Physics --- Mathematics
Choose an application
This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference “Progress and Visions in Quantum Theory in View of Gravity” which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Gravitation. --- Mathematical physics. --- Classical and Quantum Gravitation, Relativity Theory. --- Mathematical Physics. --- Physical mathematics --- Physics --- Field theory (Physics) --- Matter --- Antigravity --- Centrifugal force --- Relativity (Physics) --- Mathematics --- Properties --- Quantum gravity --- Gravitation --- Gravity, Quantum --- General relativity (Physics) --- Quantum theory --- Research. --- Mathematical models.
Choose an application
One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Choose an application
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Mathematics --- Mathematical physics --- Physics --- theoretische fysica --- wiskunde --- fysica
Choose an application
This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference “Progress and Visions in Quantum Theory in View of Gravity” which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Mathematical physics --- Geophysics --- zwaartekracht --- wiskunde --- fysica
Listing 1 - 10 of 12 | << page >> |
Sort by
|