Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Particles (Nuclear physics) --- Nuclear counters --- Nuclear reactions --- Electromagnetic interactions --- Particules (Physique nucléaire) --- Détecteurs nucléaires --- Réactions nucléaires --- Interactions électromagnétiques --- Experiments --- Technique --- Expériences --- Particules (Physique nucléaire) --- Détecteurs nucléaires --- Réactions nucléaires --- Interactions électromagnétiques --- Expériences --- Particles (Nuclear physics) - Technique --- Particles (Nuclear physics) - Experiments
Choose an application
This book brings together the most important topics in experimental particle physics in the late twentieth century to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. First published in 1986, this title has been reissued as an Open Access publication on Cambridge Core.
Electromagnetic interactions. --- Nuclear counters. --- Nuclear detectors --- Nuclear radiation detectors --- Radiation counters --- Detectors --- Nuclear physics --- Radioactivity --- Dosimeters --- Ionization chambers --- Particle tracks (Nuclear physics) --- Period meter (Nuclear engineering) --- Interactions, Electromagnetic --- Nuclear reactions --- Instruments --- Particles (Nuclear physics) --- Nuclear reactions. --- Experiments. --- Technique.
Choose an application
Magnetostatics, the mathematical theory that describes the forces and fields resulting from the steady flow of electrical currents, has a long history. By capturing the basic concepts, and building towards the computation of magnetic fields, this book is a self-contained discussion of the major subjects in magnetostatics. Overviews of Maxwell's equations, the Poisson equation, and boundary value problems pave the way for dealing with fields from transverse, axial and periodic magnetic arrangements and assemblies of permanent magnets. Examples from accelerator and beam physics give up-to-date context to the theory. Both complex contour integration and numerical techniques for calculating magnetic fields are discussed in detail with plentiful examples. Theoretical and practical information on carefully selected topics make this a one-stop reference for magnet designers, as well as for physics and electrical engineering undergraduate students. This title, first published in 2016, has been reissued as an Open Access publication on Cambridge Core.
Magnetostatics. --- Electric charge and distribution --- Electromagnetism
Choose an application
The subject of magnetostatics - the mathematical theory that describes the forces and fields resulting from the steady flow of electrical currents - has a long history. By capturing the basic concepts, and building towards the computation of magnetic fields, this book is a self-contained discussion of the major subjects in magnetostatics. Overviews of Maxwell's equations, the Poisson equation, and boundary value problems pave the way for dealing with fields from transverse, axial and periodic magnetic arrangements and assemblies of permanent magnets. Examples from accelerator and beam physics give up-to-date context to the theory. Furthermore, both complex contour integration and numerical techniques (including finite difference, finite element, and integral equation methods) for calculating magnetic fields are discussed in detail with plentiful examples. Both theoretical and practical information on carefully selected topics make this a one-stop reference for magnet designers, as well as for physics and electrical engineering undergraduate students.
Magnetostatics. --- Electric charge and distribution --- Electromagnetism
Choose an application
This book brings together the most important topics in experimental particle physics in the late twentieth century to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. First published in 1986, this title has been reissued as an Open Access publication on Cambridge Core.
Choose an application
This book brings together the most important topics in experimental particle physics in the late twentieth century to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. First published in 1986, this title has been reissued as an Open Access publication on Cambridge Core.
Choose an application
This book brings together the most important topics in experimental particle physics in the late twentieth century to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. First published in 1986, this title has been reissued as an Open Access publication on Cambridge Core.
Choose an application
Listing 1 - 8 of 8 |
Sort by
|