Narrow your search

Library

ULiège (5)


Resource type

dissertation (5)


Language

English (3)

French (2)


Year
From To Submit

2024 (3)

2021 (1)

2017 (1)

Listing 1 - 5 of 5
Sort by

Dissertation
Estimating the helium glitch acoustic depth
Authors: --- --- --- ---
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past decade, space missions, such the CoRoT, Kepler and TESS, have provided the asteroseismic community with a vast amount of observations, of unprecedented quality. This gave the opportunity to stellar astrophysicists, to study the stellar interiors of a large variety of pulsating stars. Amongst them, are the solar-like stars, that are low-mass main-sequence stars, reaching up to 2.3 Solar Masses. 
During the main-sequence phase, the solar-like stars are stable, and they present frequencies that are very regular, which is most obvious in a power spectrum. Nevertheless, there are some departures from that equidistance, to which we refer as the smooth part, and one of the reasons for that, are the glitches. The glitches are due to sharp variations, on the internal structure of the stars, which introduce an oscillatory feature, as a function of the frequency, in the oscillation spectrum. Solar-like stars experience mostly two glitches, the helium glitch, for which our study is about, and the convection zone glitch. The former is located in the second ionization zone of helium, quite close to the stellar surface, and the latter, is located in the transition region between the convective envelope and the radiation zone. The study of those glitches is important, because they provide information about their respective regions, which further helps constrain the internal structure of a star. The amplitude of the helium glitch, is directly linked to the helium abundance, in that area and, since that area is very close to the surface, and convection dominates there, it provides information about the surface helium abundance. This is the only way to obtain that value, because the stellar surface of solar-like stars, does not have the required temperature for the excitation of helium, and thus, few or no emission lines can be obtained spectroscopically. 
There exists a number of methods that use the observed frequencies, and derive seismic constraints, which are used to derive information about the stellar structure, through stellar modeling. The one that we used for our analysis, is the Whole Spectrum and Glitches Adjustment (WhoSGlAd). It uses both the smooth part of the spectrum, along with the glitches part, to derive seismic indicators, as little correlated as possible. The accuracy of those indicators, allows them to be used as constraints by minimization techniques, in order to retrieve precise values about global quantities, as is the mass, the age and the chemical composition. 
In the case of WhoSGlAd, one of the constraints that is used is the helium glitch amplitude, but for its value we need to know the helium acoustic depth. When we work with observations this value is not available and so, we have to derive it by a model, to estimate the helium acoustic depth, which takes time and it is inconvenient, since it makes the results model dependent. In this study, we propose a method, that uses a linear relation, in order to derive this acoustic depth, which uses only observed quantities and so, makes the procedure much faster. We prove the efficiency and the accuracy of that method, by using both models and observations. This means that it does not make any sacrifices in the precision of WhoSGlAd. Moreover, since this method is linear, and uses only observables, it can be implemented in already existing codes, and provide results much faster. The method, as a result of the assumed linear formulation, does not apply to cases that are not linear. This occurs in cases beyond the main sequence, or with convective cores. This can happen for example, for the case of stars ≥1.2 solar masses, for some chemical compositions.


Dissertation
Mémoire
Authors: --- --- --- ---
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studying pulsation spectra through asteroseismology allows probing the inner structure of stars. Core helium burning stars, specifically subdwarf type B stars, have been observed to harbour pressure and gravity mode pulsations, allowing respectively to probe the envelope and core of such stars. In particular, observations show a dichotomy in gravity modes pulsation spectra, with sometimes structures called trapped modes, which induce variable period spacings between observed periods, and other times no trapped modes at all, with a rather smooth pulsation spectra showing more or less constant spacings instead. In this master thesis, we model subdwarf type B stars with both 4th generation static models and evolutionary models, using the STELUM and PULSE codes. Through this, we aim to gain insights on the influence of core helium burning on the pulsation spectra. We highlight as well the influence of the chemical and thermal structures on the behavior of pulsation spectra, in particular the mass of the core and envelope, as well as the thermal gradients prescriptions. A clear distinction is made between evolutionary and static models. The latter are studied first, and we discuss the origin of trapped modes from chemical transitions and temperature gradients in such models. In evolutionary models, we focus on the overshooting and semi-convection phenomena, which are not found in static models, and study their impact on the chemical and thermal structure of the star, as well as on the pulsation spectra. This master thesis gives the theoretical basis of pulsation spectra computed from current available stellar models of subdwarf B stars, now to be compared in detail with observations of such stars, in particular those observed by the Kepler and TESS satellites.


Dissertation
Mémoire
Authors: --- --- --- ---
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aurora on Jupiter is a remarkable phenomenon in our solar system. After having
been observed for the first time by the Voyager 1 spacecraft in 1979, many spectral
observations of these polar lights have been conducted on a continuous basis. Since
2016, the Juno spacecraft, in polar orbit around Jupiter, is gathering images and
spectroscopic data that allow us to unravel the complex interplay between Jupiter’s
magnetosphere and atmosphere.
In this work, we use data from the UVS spectrograph onboard Juno to construct
northern and southern spectral cubes for perijoves 1 to 48. From these spectral cubes,
we derive H2 brightness maps, emission angle maps and color ratio maps. We then
use use a relation between color ratio, emission angle of the photons and energy of the
precipitating electrons to compute energy maps for each of Juno’s orbits, considering
both monoenergetic and kappa energy flux distribution of electrons. These maps give
an interesting overview of the evolution of several characteristics of the auroral regions
over time.
We then perform a statistical analysis of the energy of the precipitating electrons as
a function of time. We divide each auroral region into three sub regions: the polar,
main and outer emission regions. We compare the energy of the electrons falling into
these three sub regions and the energy of the electrons falling into their counterpart
in the other hemisphere.
We also study the correlation between the H2 auroral brightness and the energy of
the precipitating electrons for the whole auroral emission region and for each sub re-
gion. We find that the H2 auroral brightness is not correlated with the energy of the
impinging photons by studying correlation plots as well as correlation coefficients for
each perijove.
In the last part, we identify zones of the auroral emission where the color ratio seems
to call into question the validity of the atmospheric model that we used. We then use
TransPlanet to model synthetic spectra produced by populations of electrons falling
into the atmospheric model that we use. We attempt to fit the modeled spectra to the
observed ones by adjusting the energy of the impinging electrons that we computed
as well as the amount of hydrocarbons in the model atmosphere. We find that the
observed spectra for some of the selected zones can be fit by tuning the energy of the
electrons while for others, changing the atmospheric composition is necessary. This
raises the question of the consistency of the atmospheric composition across the entire
auroral emission region.


Dissertation
Mémoire
Authors: --- --- --- --- --- et al.
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Contexte : La détermination précise des paramètres stellaires, rendue possible grâce aux avancées technologiques, permet de mieux comprendre la structure et l'évolution des étoiles. Elle est aussi essentielle en l'exoplanétologie car les paramètres planétaires sont souvent dépendant des paramètres de son étoile hôte. Cependant, les données spectroscopiques ne sont pas très précises. L'astérosismologie, en sondant les oscillations stellaires, permet de réduire significativement les incertitudes sur des paramètres essentiels tels que la masse, l'âge et la composition chimique des étoiles. À travers l'étude des indicateurs sismiques, il est ainsi possible de construire des modèles stellaires précis.

But : Ce travail vise à explorer la structure et l'évolution des étoiles, en particulier les sous-géantes, à travers l'observation de l'étoile Gemma par le satellite Kepler. L'objectif de cette étude est de contraindre certains de ses paramètres stellaires et d'améliorer la précision des modèles en testant plusieurs configurations physiques.

Méthode : Nous avons utilisé des codes numériques récents, tels que WhoSGlAd, EGGMiMoSA et PORTE-CLÉS, pour modéliser l'étoile Gemma en intégrant à la fois des données spectroscopiques et sismiques. Plusieurs configurations physiques ont été testées pour réduire les écarts entre les modèles théoriques et les observations.

Conclusion : L'étude a permis d'améliorer la compréhension des paramètres influençant l'évolution stellaire, bien que certains écarts persistent entre les modèles et les observations. Des ajustements supplémentaires, comme l'inclusion du paramètre de phase $epsilon_g$, sont suggérés pour affiner les futures modélisations.


Dissertation
Musique des étoiles : La mélodie du glitch
Authors: --- --- --- --- --- et al.
Year: 2017 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Le but de ce travail de mémoire est de développer une méthode d'ajustement du glitch causé par la seconde zone d'ionisation partielle de l'hélium au sein des étoiles de type solaire. Nous l'appellerons l'algorithme 'HeFi' pour 'Helium Fit'. Notre méthode prend pour point de départ la méthode C développée par Verma et al. (2014, ApJ, 790 138). L'intérêt nouveau de celle que nous développons est que nous visons à utiliser des informations indépendantes lors de nos ajustements afin de garantir la robustesse et la fiabilité de nos résultats. Ce n'était pas le cas des méthodes proposées jusqu'ici. Ceci passe par la redéfinition d'une fonction coût unique ainsi que des paramètres ajustés afin d'empêcher toute corrélation entre ceux-ci. Notre algorithme s'inscrit dans la catégorie des méthodes astérosismologiques directes. Nous l'appliquerons à l'analyse du signal du glitch de l'analogue solaire 16 Cygni A (HD 186408).

Listing 1 - 5 of 5
Sort by