Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (4)

Listing 1 - 4 of 4
Sort by

Book
Stem Cell Delivery Routes : From Preclinical Models to Clinical Applications
Author:
ISBN: 9815040103 9815040111 Year: 2021 Publisher: Singapore : Bentham Science Publishers Ltd,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Stem Cell Delivery Routes: From Preclinical Models to Clinical Applications covers current knowledge about stem cell delivery for cell-based therapeutics. Starting with an introduction to stem cell technology, the book provides information about the main mesenchymal stem cell (MSC) delivery routes and the cell carrier materials used for delivering the cells. The main delivery routes include the liver, the kidney and the ocular surface. This introductory information is followed up with general information about stem cell based therapeutics, covering relevant topics such as the secretome and optimal delivery strategies in cell-based therapeutics. The book then progresses into the topic of in vivo cell tracking methods in preclinical and clinical studies with specific emphasis on the liver, ocular surface and kidney while also covering factors that affect the residence time, viability, and homing of MSCs with respect to the targeted location. The discussions in these chapters are accompanied by key descriptions of MSC-based therapeutic applications in rodent models and human clinical studies. The advantages and bottlenecks in clinical MSC application, and ways to improve the therapeutic efficacy of transplanted cells are also presented, rounding up the contents of the book. Key Feature: - A comprehensive summary of stem cell delivery for cell-based therapeutics, suitable for a broad range of readers - 10 sequential chapters that enhance the reader's understanding on the subject - An Introduction to stem cell technology - Coverage of 3 key stem cell transplantation routes (liver, kidney and eye) - Coverage of in vivo stem cell tracking - Inclusion of basic information about MSC delivery and methods of clinical applications - Discussions about preclinical mouse models - A perspective on stem cell bottlenecks and recent advances in biomedical engineering that enhance the clinical application of MSCs The contents are adapted to suit readers learning about advanced stem cells therapies at all academic levels, including undergraduates, lecturers, as well as those who are curious to understand more about the importance of stem cells, and their application in cell-based therapeutics. Professionals involved in allied fields in clinical research, and biomedical engineering will also gain a substantial understanding about regenerative medicine and cell transplantation.

Keywords

Stem cells --- Research.


Book
3Ts in Gastrointestinal Microbiome Era: Technology, Translational Research and Transplant
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

We have entered a new era where some concepts of the complex community of microorganisms (microbiota comprising bacteria, fungi, viruses, bacteriophages and helminths) are being re-discovered and re-visited. Microbiota and human interaction is not new; they have shared a long history of co-existence. Nevertheless, the opportunities to understand the role of these microorganisms in human diseases and to design a potential treatment were limited. At present, thanks to development of innovative and cutting-edge molecular biological and microbiological technologies as well as clinical informatics and bioinformatics skills, microbiome application is moving into clinics. Approaches to therapy based on prebiotics, probiotics and lately on fecal microbiota transplantation has revolutionized medicine. Microbiota outnumbers our genes and is now regarded as another organ of the body. The gastrointestinal tract and gut microbiota display a well-documented symbiotic relationship. Disruption of intestinal microbiota homeostasis—called dysbiosis—has been associated with several diseases. Whether dysbiosis is a cause or consequence of disease initiation and progression still needs to be investigated in more depth. The aim of this book is to highlight recent advances in the field of microbiome research, which are now shaping medicine, and current approaches to microbiome-oriented therapy for gastrointestinal diseases. Dr. Rinaldo Pellicano Dr. Sharmila Fagoonee Guest Editors


Book
3Ts in Gastrointestinal Microbiome Era: Technology, Translational Research and Transplant
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

We have entered a new era where some concepts of the complex community of microorganisms (microbiota comprising bacteria, fungi, viruses, bacteriophages and helminths) are being re-discovered and re-visited. Microbiota and human interaction is not new; they have shared a long history of co-existence. Nevertheless, the opportunities to understand the role of these microorganisms in human diseases and to design a potential treatment were limited. At present, thanks to development of innovative and cutting-edge molecular biological and microbiological technologies as well as clinical informatics and bioinformatics skills, microbiome application is moving into clinics. Approaches to therapy based on prebiotics, probiotics and lately on fecal microbiota transplantation has revolutionized medicine. Microbiota outnumbers our genes and is now regarded as another organ of the body. The gastrointestinal tract and gut microbiota display a well-documented symbiotic relationship. Disruption of intestinal microbiota homeostasis—called dysbiosis—has been associated with several diseases. Whether dysbiosis is a cause or consequence of disease initiation and progression still needs to be investigated in more depth. The aim of this book is to highlight recent advances in the field of microbiome research, which are now shaping medicine, and current approaches to microbiome-oriented therapy for gastrointestinal diseases. Dr. Rinaldo Pellicano Dr. Sharmila Fagoonee Guest Editors


Book
3Ts in Gastrointestinal Microbiome Era: Technology, Translational Research and Transplant
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

We have entered a new era where some concepts of the complex community of microorganisms (microbiota comprising bacteria, fungi, viruses, bacteriophages and helminths) are being re-discovered and re-visited. Microbiota and human interaction is not new; they have shared a long history of co-existence. Nevertheless, the opportunities to understand the role of these microorganisms in human diseases and to design a potential treatment were limited. At present, thanks to development of innovative and cutting-edge molecular biological and microbiological technologies as well as clinical informatics and bioinformatics skills, microbiome application is moving into clinics. Approaches to therapy based on prebiotics, probiotics and lately on fecal microbiota transplantation has revolutionized medicine. Microbiota outnumbers our genes and is now regarded as another organ of the body. The gastrointestinal tract and gut microbiota display a well-documented symbiotic relationship. Disruption of intestinal microbiota homeostasis—called dysbiosis—has been associated with several diseases. Whether dysbiosis is a cause or consequence of disease initiation and progression still needs to be investigated in more depth. The aim of this book is to highlight recent advances in the field of microbiome research, which are now shaping medicine, and current approaches to microbiome-oriented therapy for gastrointestinal diseases. Dr. Rinaldo Pellicano Dr. Sharmila Fagoonee Guest Editors

Keywords

Public health & preventive medicine --- Bacteroides ovatus --- Bifidobacterium adolescentis --- Dysbiosis --- Faecalibacterium prausnitzii --- Ruminococcus gnavus --- type 1 diabetes --- microbiota --- microbiome --- auto-immunity --- gut permeability --- gut --- IBS --- celiac disease --- enteropathy --- gluten --- therapy --- gut microbiota --- precision medicine --- Clostridium difficile --- inflammatory bowel disease --- ulcerative colitis --- irritable bowel disease --- metabolic syndrome --- gastric microbiota --- transient --- persistent --- culture --- sequencing --- Helicobacter pylori --- fecal microbiota transplantation --- feces donor --- fecal microbiota --- flow cytometry --- viability of bacteria --- next-generation sequencing --- culturing of fecal microbiota --- Alzheimer’s disease --- microbiota–gut–brain axis --- neurodegenerative disease --- intestinal flora --- necrotizing enterocolitis --- intestinal microbiology --- infant gut --- metabolomics --- IL-6 --- IL-8 --- IL-12p70 --- intestinal permeability --- zonulin --- gut virome --- steatosis --- cirrhosis --- hepatocellular carcinoma --- gastrointestinal --- technology --- high-throughput --- crohn’s disease --- mononuclear cells --- transient receptor potential channel --- pancreatic diseases --- acute pancreatitis --- chronic pancreatitis --- diabetes mellitus --- pancreatic ductal adenocarcinoma --- pancreatic cystic neoplasms --- Bacteroides ovatus --- Bifidobacterium adolescentis --- Dysbiosis --- Faecalibacterium prausnitzii --- Ruminococcus gnavus --- type 1 diabetes --- microbiota --- microbiome --- auto-immunity --- gut permeability --- gut --- IBS --- celiac disease --- enteropathy --- gluten --- therapy --- gut microbiota --- precision medicine --- Clostridium difficile --- inflammatory bowel disease --- ulcerative colitis --- irritable bowel disease --- metabolic syndrome --- gastric microbiota --- transient --- persistent --- culture --- sequencing --- Helicobacter pylori --- fecal microbiota transplantation --- feces donor --- fecal microbiota --- flow cytometry --- viability of bacteria --- next-generation sequencing --- culturing of fecal microbiota --- Alzheimer’s disease --- microbiota–gut–brain axis --- neurodegenerative disease --- intestinal flora --- necrotizing enterocolitis --- intestinal microbiology --- infant gut --- metabolomics --- IL-6 --- IL-8 --- IL-12p70 --- intestinal permeability --- zonulin --- gut virome --- steatosis --- cirrhosis --- hepatocellular carcinoma --- gastrointestinal --- technology --- high-throughput --- crohn’s disease --- mononuclear cells --- transient receptor potential channel --- pancreatic diseases --- acute pancreatitis --- chronic pancreatitis --- diabetes mellitus --- pancreatic ductal adenocarcinoma --- pancreatic cystic neoplasms

Listing 1 - 4 of 4
Sort by