Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
Newton-Raphson method. --- Method, Newton-Raphson --- Method of tangents --- Newton approximation method --- Newton iterative process --- Newton method --- Newton-Raphson algorithm --- Newton-Raphson formula --- Newton-Raphson process --- Newton's approximation method --- Newton's method --- Quadratically convergent Newton-Raphson process --- Raphson method, Newton --- -Second-order Newton-Raphson process --- Mathematics. --- Integral equations. --- Operator theory. --- Computer mathematics. --- Operator Theory. --- Computational Mathematics and Numerical Analysis. --- Integral Equations. --- Iterative methods (Mathematics) --- Computer science --- Equations, Integral --- Functional equations --- Functional analysis --- Computer mathematics --- Discrete mathematics --- Electronic data processing --- Mathematics
Choose an application
In this book the authors use a technique based on recurrence relations to study the convergence of the Newton method under mild differentiability conditions on the first derivative of the operator involved. The authors’ technique relies on the construction of a scalar sequence, not majorizing, that satisfies a system of recurrence relations, and guarantees the convergence of the method. The application is user-friendly and has certain advantages over Kantorovich’s majorant principle. First, it allows generalizations to be made of the results obtained under conditions of Newton-Kantorovich type and, second, it improves the results obtained through majorizing sequences. In addition, the authors extend the application of Newton’s method in Banach spaces from the modification of the domain of starting points. As a result, the scope of Kantorovich’s theory for Newton’s method is substantially broadened. Moreover, this technique can be applied to any iterative method. This book is chiefly intended for researchers and (postgraduate) students working on nonlinear equations, as well as scientists in general with an interest in numerical analysis.
Operator theory. --- Numerical analysis. --- Integral equations. --- Differential equations. --- Partial differential equations. --- Operator Theory. --- Numerical Analysis. --- Integral Equations. --- Ordinary Differential Equations. --- Partial Differential Equations. --- Partial differential equations --- 517.91 Differential equations --- Differential equations --- Equations, Integral --- Functional equations --- Functional analysis --- Mathematical analysis --- Banach spaces. --- Differential algebra. --- Algebra, Differential --- Differential fields --- Algebraic fields --- Functions of complex variables --- Generalized spaces --- Topology
Choose an application
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
Algebra --- Operator theory --- Mathematics --- Computer. Automation --- algebra --- analyse (wiskunde) --- informatica --- externe fixatie (geneeskunde --- wiskunde
Choose an application
Algebra --- Operator theory --- Partial differential equations --- Differential equations --- Numerical analysis --- differentiaalvergelijkingen --- algebra --- analyse (wiskunde) --- numerieke analyse
Choose an application
In this book the authors use a technique based on recurrence relations to study the convergence of the Newton method under mild differentiability conditions on the first derivative of the operator involved. The authors’ technique relies on the construction of a scalar sequence, not majorizing, that satisfies a system of recurrence relations, and guarantees the convergence of the method. The application is user-friendly and has certain advantages over Kantorovich’s majorant principle. First, it allows generalizations to be made of the results obtained under conditions of Newton-Kantorovich type and, second, it improves the results obtained through majorizing sequences. In addition, the authors extend the application of Newton’s method in Banach spaces from the modification of the domain of starting points. As a result, the scope of Kantorovich’s theory for Newton’s method is substantially broadened. Moreover, this technique can be applied to any iterative method. This book is chiefly intended for researchers and (postgraduate) students working on nonlinear equations, as well as scientists in general with an interest in numerical analysis.
Algebra --- Operator theory --- Partial differential equations --- Differential equations --- Numerical analysis --- differentiaalvergelijkingen --- algebra --- analyse (wiskunde) --- numerieke analyse
Listing 1 - 5 of 5 |
Sort by
|