Narrow your search
Listing 1 - 6 of 6
Sort by

Book
Optimization models
Authors: ---
ISBN: 9781107050877 1107050871 Year: 2014 Publisher: Cambridge, United Kingdom : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Emphasizing practical understanding over the technicalities of specific algorithms, this elegant textbook is an accessible introduction to the field of optimization, focusing on powerful and reliable convex optimization techniques. Students and practitioners will learn how to recognize, simplify, model and solve optimization problems - and apply these principles to their own projects. A clear and self-contained introduction to linear algebra demonstrates core mathematical concepts in a way that is easy to follow, and helps students to understand their practical relevance. Requiring only a basic understanding of geometry, calculus, probability and statistics, and striking a careful balance between accessibility and rigor, it enables students to quickly understand the material, without being overwhelmed by complex mathematics. Accompanied by numerous end-of-chapter problems, an online solutions manual for instructors, and relevant examples from diverse fields including engineering, data science, economics, finance, and management, this is the perfect introduction to optimization for undergraduate and graduate students.

Advances in linear matrix inequality methods in control
Authors: ---
ISBN: 0898714389 9780898714388 Year: 2000 Publisher: Philadelphia: Society for industrial and applied mathematics,


Book
Robust optimization
Authors: --- ---
ISBN: 1282259288 9786612259289 1400831059 0691143684 9780691143682 9781400831050 9781282259287 6612259280 Year: 2009 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Keywords

Robust optimization. --- Linear programming. --- 519.8 --- 681.3*G16 --- 681.3*G16 Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- Optimization: constrained optimization; gradient methods; integer programming; least squares methods; linear programming; nonlinear programming (Numericalanalysis) --- 519.8 Operational research --- Operational research --- Robust optimization --- Linear programming --- Optimisation robuste --- Programmation linéaire --- Optimization, Robust --- RO (Robust optimization) --- Mathematical optimization --- Production scheduling --- Programming (Mathematics) --- 0O. --- Accuracy and precision. --- Additive model. --- Almost surely. --- Approximation algorithm. --- Approximation. --- Best, worst and average case. --- Bifurcation theory. --- Big O notation. --- Candidate solution. --- Central limit theorem. --- Chaos theory. --- Coefficient. --- Computational complexity theory. --- Constrained optimization. --- Convex hull. --- Convex optimization. --- Convex set. --- Cumulative distribution function. --- Curse of dimensionality. --- Decision problem. --- Decision rule. --- Degeneracy (mathematics). --- Diagram (category theory). --- Duality (optimization). --- Dynamic programming. --- Exponential function. --- Feasible region. --- Floor and ceiling functions. --- For All Practical Purposes. --- Free product. --- Ideal solution. --- Identity matrix. --- Inequality (mathematics). --- Infimum and supremum. --- Integer programming. --- Law of large numbers. --- Likelihood-ratio test. --- Linear dynamical system. --- Linear inequality. --- Linear map. --- Linear matrix inequality. --- Linear regression. --- Loss function. --- Margin classifier. --- Markov chain. --- Markov decision process. --- Mathematical optimization. --- Max-plus algebra. --- Maxima and minima. --- Multivariate normal distribution. --- NP-hardness. --- Norm (mathematics). --- Normal distribution. --- Optimal control. --- Optimization problem. --- Orientability. --- P versus NP problem. --- Pairwise. --- Parameter. --- Parametric family. --- Probability distribution. --- Probability. --- Proportionality (mathematics). --- Quantity. --- Random variable. --- Relative interior. --- Robust control. --- Robust decision-making. --- Semi-infinite. --- Sensitivity analysis. --- Simple set. --- Singular value. --- Skew-symmetric matrix. --- Slack variable. --- Special case. --- Spherical model. --- Spline (mathematics). --- State variable. --- Stochastic calculus. --- Stochastic control. --- Stochastic optimization. --- Stochastic programming. --- Stochastic. --- Strong duality. --- Support vector machine. --- Theorem. --- Time complexity. --- Uncertainty. --- Uniform distribution (discrete). --- Unimodality. --- Upper and lower bounds. --- Variable (mathematics). --- Virtual displacement. --- Weak duality. --- Wiener filter. --- With high probability. --- Without loss of generality.

Linear matrix inequalities in system and control theory
Authors: --- ---
ISBN: 089871334X 0898714850 9780898714852 9780898713343 Year: 1994 Volume: 15 Publisher: Philadelphia: Society for industrial and applied mathematics,


Digital
Robust Optimization
Authors: --- ---
ISBN: 9781400831050 9780691143682 Year: 2009 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Mathematics


Dissertation
Robustness of linear systems to parameter variations.
Authors: --- ---
Year: 1990 Publisher: Stanford Stanford university

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Listing 1 - 6 of 6
Sort by