Listing 1 - 10 of 10 |
Sort by
|
Choose an application
"Robots are increasingly leaving the confines of laboratories, warehouses, and manufacturing facilities, venturing into agriculture and other settings where they must operate in uncertain conditions over long timescales. This multidisciplinary book draws on the principles of ecology to show how robots can take full advantage of the environments they inhabit, including as sources of energy. Magnus Egerstedt introduces a revolutionary new design paradigm-robot ecology-that makes it possible to achieve long-duration autonomy while avoiding catastrophic failures. Central to ecology is the idea that the richness of an organism's behavior is a function of the environmental constraints imposed by its habitat. Moving beyond traditional strategies that focus on optimal policies for making robots achieve targeted tasks, Egerstedt explores how to use survivability constraints to produce both effective and provably safe robot behaviors. He blends discussions of ecological principles with the development of control barrier functions as a formal approach to constraint-based control design, and provides an in-depth look at the design of the SlothBot, a slow and energy-efficient robot used for environmental monitoring and conservation. Visionary in scope, Robot Ecology presents a comprehensive and unified methodology for designing robots that can function over long durations in diverse natural environments"--
Choose an application
Choose an application
Dancing humanoids, robotic art installations, and music generated by mathematically precise methods are no longer science fiction; in fact they are the subject of this book. This first-of-its-kind anthology assembles technical research that makes such creations possible. In order to mechanize something as enigmatic and personal as dance, researchers must delve deeply into two distinct academic disciplines: control theory and art. Broadly, this research uses techniques from the world of art to inspire methods in control, enables artistic endeavours using advanced control theory, and aids in the analysis of art using metrics devised by a systems theoretic approach. To ensure that artistic influences are well represented, the individual chapters are focused so that they relate their contribution to the arts meaningfully and explicitly. Specially composed introductions set up the contributions either in terms of inspiration by artistic principles or their contribution to the arts through new analysis tools. To facilitate this, the majority of the chapters are authored jointly by experts in control theory and by artists, including dancers, choreographers, puppeteers, and painters. Connections between controls and art then permeate the text so that these important relationships play a central role in the book. Controls and Art surveys current projects in this area—including a disco dancing robot, a reactive museum exhibit, and otherworldly music—and illuminates open problems and topics for research in this emerging interdisciplinary field. It will draw attention both from experts in robotics and control interested in developing the artistic side of their creations and from academics studying dance, theater, music and the visual arts with an interest in avant-garde means of production.
Art and technology. --- Arts. --- Control theory -- Congresses. --- Engineering. --- Robots -- Control systems -- Congresses. --- Robots -- Motion -- Congresses. --- Science (General). --- Control theory --- Robots --- Mechanical Engineering --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Operations Research --- Mechanical Engineering - General --- Control systems --- Motion --- Automatic control --- Digital control systems --- Automation --- Popular works. --- Control engineering. --- Robotics. --- Automation. --- Control. --- Popular Science, general. --- Robotics and Automation. --- Electronic digital computers --- Control and Systems Theory. --- Arts, Fine --- Arts, Occidental --- Arts, Western --- Fine arts --- Humanities --- Automatic factories --- Automatic production --- Computer control --- Engineering cybernetics --- Factories --- Industrial engineering --- Mechanization --- Assembly-line methods --- Automatic machinery --- CAD/CAM systems --- Robotics --- Machine theory --- Control engineering --- Control equipment --- Engineering instruments --- Programmable controllers --- Arts, Primitive
Choose an application
Splines, both interpolatory and smoothing, have a long and rich history that has largely been application driven. This book unifies these constructions in a comprehensive and accessible way, drawing from the latest methods and applications to show how they arise naturally in the theory of linear control systems. Magnus Egerstedt and Clyde Martin are leading innovators in the use of control theoretic splines to bring together many diverse applications within a common framework. In this book, they begin with a series of problems ranging from path planning to statistics to approximation. Using the tools of optimization over vector spaces, Egerstedt and Martin demonstrate how all of these problems are part of the same general mathematical framework, and how they are all, to a certain degree, a consequence of the optimization problem of finding the shortest distance from a point to an affine subspace in a Hilbert space. They cover periodic splines, monotone splines, and splines with inequality constraints, and explain how any finite number of linear constraints can be added. This book reveals how the many natural connections between control theory, numerical analysis, and statistics can be used to generate powerful mathematical and analytical tools. This book is an excellent resource for students and professionals in control theory, robotics, engineering, computer graphics, econometrics, and any area that requires the construction of curves based on sets of raw data.
Interpolation. --- Smoothing (Numerical analysis) --- Smoothing (Statistics) --- Curve fitting. --- Splines. --- Spline theory. --- Spline functions --- Approximation theory --- Interpolation --- Joints (Engineering) --- Mechanical movements --- Harmonic drives --- Fitting, Curve --- Numerical analysis --- Least squares --- Statistics --- Curve fitting --- Graduation (Statistics) --- Roundoff errors --- Graphic methods --- Accuracy and precision. --- Affine space. --- Affine variety. --- Algorithm. --- Approximation. --- Arbitrarily large. --- B-spline. --- Banach space. --- Bernstein polynomial. --- Bifurcation theory. --- Big O notation. --- Birkhoff interpolation. --- Boundary value problem. --- Bézier curve. --- Chaos theory. --- Computation. --- Computational problem. --- Condition number. --- Constrained optimization. --- Continuous function (set theory). --- Continuous function. --- Control function (econometrics). --- Control theory. --- Controllability. --- Convex optimization. --- Convolution. --- Cubic Hermite spline. --- Data set. --- Derivative. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Directional derivative. --- Discrete mathematics. --- Dynamic programming. --- Equation. --- Estimation. --- Filtering problem (stochastic processes). --- Gaussian quadrature. --- Gradient descent. --- Gramian matrix. --- Growth curve (statistics). --- Hermite interpolation. --- Hermite polynomials. --- Hilbert projection theorem. --- Hilbert space. --- Initial condition. --- Initial value problem. --- Integral equation. --- Iterative method. --- Karush–Kuhn–Tucker conditions. --- Kernel method. --- Lagrange polynomial. --- Law of large numbers. --- Least squares. --- Linear algebra. --- Linear combination. --- Linear filter. --- Linear map. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Monotonic function. --- Nonlinear programming. --- Nonlinear system. --- Normal distribution. --- Numerical analysis. --- Numerical stability. --- Optimal control. --- Optimization problem. --- Ordinary differential equation. --- Orthogonal polynomials. --- Parameter. --- Piecewise. --- Pointwise. --- Polynomial interpolation. --- Polynomial. --- Probability distribution. --- Quadratic programming. --- Random variable. --- Rate of convergence. --- Ratio test. --- Riccati equation. --- Simpson's rule. --- Simultaneous equations. --- Smoothing spline. --- Smoothing. --- Smoothness. --- Special case. --- Spline (mathematics). --- Spline interpolation. --- Statistic. --- Stochastic calculus. --- Stochastic. --- Telemetry. --- Theorem. --- Trapezoidal rule. --- Waypoint. --- Weight function. --- Without loss of generality.
Choose an application
This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA
Network analysis (Planning) --- Multiagent systems --- Agent-based model (Computer software) --- MASs (Multiagent systems) --- Multi-agent systems --- Systems, Multiagent --- Intelligent agents (Computer software) --- Project networks --- Planning --- System analysis --- Graphic methods. --- Mathematical models. --- Mathematical models --- Graphic methods --- Addition. --- Adjacency matrix. --- Algebraic graph theory. --- Algorithm. --- Automorphism. --- Bipartite graph. --- Cardinality. --- Cartesian product. --- Circulant graph. --- Combinatorics. --- Complete graph. --- Computation. --- Connectivity (graph theory). --- Controllability. --- Convex combination. --- Corollary. --- Cycle graph (algebra). --- Cycle space. --- Degree (graph theory). --- Degree matrix. --- Diagonal matrix. --- Diameter. --- Differentiable function. --- Dimension. --- Directed graph. --- Division by zero. --- Dynamical system. --- Eigenvalues and eigenvectors. --- Equilibrium point. --- Estimation. --- Estimator. --- Existential quantification. --- Extremal graph theory. --- Graph (discrete mathematics). --- Graph theory. --- Identity matrix. --- Incidence matrix. --- Information exchange. --- Initial condition. --- Interconnection. --- Iteration. --- Kalman filter. --- Kronecker product. --- LTI system theory. --- LaSalle's invariance principle. --- Laplacian matrix. --- Least squares. --- Line graph. --- Linear map. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Markov chain. --- Mathematical optimization. --- Matrix exponential. --- Measurement. --- Multi-agent system. --- Nash equilibrium. --- Natural number. --- Network topology. --- Nonnegative matrix. --- Notation. --- Observability. --- Optimal control. --- Optimization problem. --- Pairwise. --- Parameter. --- Path graph. --- Permutation matrix. --- Permutation. --- Positive semidefinite. --- Positive-definite matrix. --- Probability. --- Quantity. --- Random graph. --- Random variable. --- Rate of convergence. --- Requirement. --- Result. --- Robotics. --- Scientific notation. --- Sensor. --- Sign (mathematics). --- Simplicial complex. --- Special case. --- Spectral graph theory. --- Stochastic matrix. --- Strongly connected component. --- Subset. --- Summation. --- Supergraph. --- Symmetric matrix. --- Systems theory. --- Theorem. --- Theory. --- Unit interval. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Without loss of generality.
Choose an application
Dancing humanoids, robotic art installations, and music generated by mathematically precise methods are no longer science fiction; in fact they are the subject of this book. This first-of-its-kind anthology assembles technical research that makes such creations possible. In order to mechanize something as enigmatic and personal as dance, researchers must delve deeply into two distinct academic disciplines: control theory and art. Broadly, this research uses techniques from the world of art to inspire methods in control, enables artistic endeavours using advanced control theory, and aids in the analysis of art using metrics devised by a systems theoretic approach. To ensure that artistic influences are well represented, the individual chapters are focused so that they relate their contribution to the arts meaningfully and explicitly. Specially composed introductions set up the contributions either in terms of inspiration by artistic principles or their contribution to the arts through new analysis tools. To facilitate this, the majority of the chapters are authored jointly by experts in control theory and by artists, including dancers, choreographers, puppeteers, and painters. Connections between controls and art then permeate the text so that these important relationships play a central role in the book. Controls and Art surveys current projects in this area—including a disco dancing robot, a reactive museum exhibit, and otherworldly music—and illuminates open problems and topics for research in this emerging interdisciplinary field. It will draw attention both from experts in robotics and control interested in developing the artistic side of their creations and from academics studying dance, theater, music and the visual arts with an interest in avant-garde means of production.
Science --- Applied physical engineering --- Engineering sciences. Technology --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- Art --- science fiction --- popularisering wetenschap --- automatisering --- wetenschap --- kunst --- wetenschappen --- controleleer --- KI (kunstmatige intelligentie) --- ingenieurswetenschappen --- robots --- AI (artificiële intelligentie)
Choose an application
This volume contains the proceedings of the 11th Workshop on Hybrid Systems: Computation and Control (HSCC 2008) held in St. Louis, Missouri during April 22–24,2008.The annual workshop on hybrid systems focuses on research in - bedded, reactive systems involving the interplay between symbolic/switching and continuous dynamical behaviors. HSCC attracts academic as well as industrial researchers to exchange information on the latest developments of applications and theoretical advancements in the design, analysis, control, optimization, and implementation of hybrid systems, with particular attention to embedded and networked control systems. New for this year was that HSCC was part of the inaugural CPSWEEK (Cyber-Physical Systems Week) – a co-located cluster of three conferences: HSCC, RTAS (Real-Time and Embedded Technology and Applications Symposium), and IPSN (International Conference on Information Processing in Sensor Networks). The previous workshops in the series of HSCC were held in Berkeley, USA (1998),Nijmegen, The Netherlands (1999), Pittsburgh, USA(2000), Rome, Italy (2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), Philadelphia, USA (2004),Zurich, Switzerland (2005) , Santa Barbara, USA (2006), and Pisa, Italy (2007). We would like to thank the Program Committee members and the reviewers for an excellent job of evaluating the submissions and participating in the online Program Committee discussions. We are grateful to the Steering Committee for their helpful guidance and support. We would also like to thank Patrick Martin for putting together these proceedings, and Jiuguang Wang for developing and maintaining the HSCC 2008 website. January 2008 Magnus Egerstedt Bud Mishra Organization HSCC 2008 was technically co-sponsored by the IEEE Control Systems Society and organized in cooperation with ACM/SIGBED.
Hybrid computers --- Hybrid systems --- Dynamic systems, Hybrid --- Hybrid dynamic systems --- System theory --- Information theory. --- Software engineering. --- Computer science. --- Logic design. --- Theory of Computation. --- Special Purpose and Application-Based Systems. --- Processor Architectures. --- Logics and Meanings of Programs. --- Software Engineering. --- Computation by Abstract Devices. --- Design, Logic --- Design of logic systems --- Digital electronics --- Electronic circuit design --- Logic circuits --- Machine theory --- Switching theory --- Computer software engineering --- Engineering --- Communication theory --- Communication --- Cybernetics --- Informatics --- Science --- Computers. --- Special purpose computers. --- Microprocessors. --- Computer logic. --- Computer science logic --- Logic, Symbolic and mathematical --- Minicomputers --- Special purpose computers --- Computers --- Automatic computers --- Automatic data processors --- Computer hardware --- Computing machines (Computers) --- Electronic brains --- Electronic calculating-machines --- Electronic computers --- Hardware, Computer --- Computer systems --- Calculators --- Cyberspace --- Computers, Special purpose. --- Computer architecture. --- Computer Science Logic and Foundations of Programming. --- Architecture, Computer
Choose an application
Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thrust in the multi-robot community: distributed sensing (Part I); localization, navigation, and formations (Part II); coordination algorithms and formal methods (Part III); modularity, distributed manipulation, and platforms (Part IV).
Choose an application
Computer science --- Computer architecture. Operating systems --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- vormgeving --- informatica --- simulaties --- programmeren (informatica) --- software engineering --- KI (kunstmatige intelligentie) --- architectuur (informatica) --- AI (artificiële intelligentie)
Choose an application
This volume contains the proceedings ofthe 11th Workshop on Hybrid Systems: Computation and Control (HSCC 2008) held in St. Louis, Missouriduring April 22-24,2008.The annual workshop on hybrid systems focuses on researchin - bedded,reactivesystemsinvolvingtheinterplaybetweensymbolic/switchingand continuous dynamical behaviors. HSCC attracts academic as well as industrial researchers to exchange information on the latest developments of applications and theoretical advancements in the design, analysis, control, optimization, and implementation of hybrid systems, with particular attention to embedded and networked control systems. New for this year was that HSCC was part of the inaugural CPSWEEK (Cyber-Physical Systems Week) - a co-located cluster of three conferences: HSCC, RTAS (Real-Time and Embedded Technology and Applications Sym- sium), and IPSN (International Conference on Information Processing in Sensor Networks). The previous workshops in the series of HSCC were held in Berkeley, USA (1998),Nijmegen,TheNetherlands(1999),Pittsburgh,USA(2000),Rome,Italy (2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), Philadelphia, USA (2004),Zurich, Switzerland (2005) , Santa Barbara,USA (2006), and Pisa, Italy (2007). We would like to thank the Program Committee members and the reviewers for an excellent job of evaluating the submissions and participating in the online Program Committee discussions. We are grateful to the Steering Committee for their helpful guidance and support. We would also like to thank Patrick Martin for putting together these proceedings, and Jiuguang Wang for developing and maintaining the HSCC 2008 website. January 2008 Magnus Egerstedt Bud Mishra Organization HSCC 2008 was technically co-sponsored by the IEEE Control Systems Society and organized in cooperation with ACM/SIGBED.
Computer science --- Computer architecture. Operating systems --- Artificial intelligence. Robotics. Simulation. Graphics --- Computer. Automation --- vormgeving --- informatica --- simulaties --- programmeren (informatica) --- software engineering --- KI (kunstmatige intelligentie) --- architectuur (informatica)
Listing 1 - 10 of 10 |
Sort by
|