Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book provides an introduction to the theory of ordinary differential equations and its applications to population dynamics. Part I focuses on linear systems. Beginning with some modeling background, it considers existence, uniqueness, stability of solution, positivity, and the Perron–Frobenius theorem and its consequences. Part II is devoted to nonlinear systems, with material on the semiflow property, positivity, the existence of invariant sub-regions, the Linearized Stability Principle, the Hartman–Grobman Theorem, and monotone semiflow. Part III opens up new perspectives for the understanding of infectious diseases by applying the theoretical results to COVID-19, combining data and epidemic models. Throughout the book the material is illustrated by numerical examples and their MATLAB codes are provided. Bridging an interdisciplinary gap, the book will be valuable to graduate and advanced undergraduate students studying mathematics and population dynamics.
Mathematics. --- Differential equations. --- Epidemiology. --- Mathematical models. --- Applications of Mathematics. --- Differential Equations. --- Mathematical Modeling and Industrial Mathematics. --- Models, Mathematical --- Simulation methods --- Diseases --- Public health --- Math --- Science --- 517.91 Differential equations --- Differential equations --- Models matemàtics --- Població --- Malalties infeccioses --- Equacions diferencials --- Creixement demogràfic --- Natalitat --- Població humana --- Superpoblació --- Ecologia humana --- Economia --- Assistència en matèria de població --- Biologia de poblacions --- Censos --- Control de la natalitat --- Envelliment de la població --- Generació Y --- Generació Z --- Transició demogràfica --- Assentaments humans --- Demografia --- Mortalitat --- Models (Matemàtica) --- Models experimentals --- Models teòrics --- Mètodes de simulació --- Anàlisi de sistemes --- Mètode de Montecarlo --- Modelització multiescala --- Models economètrics --- Models lineals (Estadística) --- Models multinivell (Estadística) --- Models no lineals (Estadística) --- Programació (Ordinadors) --- Simulació per ordinador --- Teoria de màquines --- Models biològics --- Càlcul --- Funcions de Bessel --- Àlgebra diferencial --- Càlcul integral --- Càlcul operacional --- Equacions d'evolució --- Equacions de camp d'Einstein --- Equacions de Lagrange --- Equacions de Pfaff --- Equacions diferencials algebraiques --- Equacions diferencials ordinàries --- Equacions en derivades parcials --- Funcions de Green --- Funcions de Lyapunov --- Problemes de contorn --- Problemes inversos (Equacions diferencials) --- Teoria d'estabilitat (Matemàtica) --- Transformació de Laplace --- Contagi --- Malalties contagioses --- Malalties encomanadisses --- Malalties transmissibles --- Microbiologia mèdica --- Salut pública --- Abscessos --- Desinfecció --- Malalties bacterianes --- Malalties emergents --- Malalties infeccioses en els infants --- Malalties d'origen alimentari --- Malalties parasitàries --- Malalties per prions --- Malalties víriques --- Micosi --- Zoonosi
Choose an application
This book provides an introduction to the theory of ordinary differential equations and its applications to population dynamics. Part I focuses on linear systems. Beginning with some modeling background, it considers existence, uniqueness, stability of solution, positivity, and the Perron-Frobenius theorem and its consequences. Part II is devoted to nonlinear systems, with material on the semiflow property, positivity, the existence of invariant sub-regions, the Linearized Stability Principle, the Hartman-Grobman Theorem, and monotone semiflow. Part III opens up new perspectives for the understanding of infectious diseases by applying the theoretical results to COVID-19, combining data and epidemic models. Throughout the book the material is illustrated by numerical examples and their MATLAB codes are provided. Bridging an interdisciplinary gap, the book will be valuable to graduate and advanced undergraduate students studying mathematics and population dynamics.
Differential equations --- Mathematics --- Epidemiology --- Planning (firm) --- differentiaalvergelijkingen --- toegepaste wiskunde --- mathematische modellen --- epidemiologie --- wiskunde
Listing 1 - 2 of 2 |
Sort by
|