Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Choose an application
The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.
Technology: general issues --- 6H-SiC --- Cu-Sn alloy --- ion implantation --- wettability --- interface --- nanoparticles --- dyes --- catalysis --- reduction --- glass/Kevlar --- hybrid composites --- hand layup --- epoxy --- hardener --- tensile --- hardness shore D --- water absorption --- density --- peel --- ratio --- Al2O3-Cr2O3 composite --- consolidation behavior --- microstructure --- mechanical properties --- thermal shock resistance --- ammonia electro-oxidation --- cyclic voltammetry --- electrochemical surface area (ECSA) --- electrocatalysts --- nanocomposites --- infrared detector --- resonant cavity --- energy applications --- absorptance --- Ce–Cu oxide --- co-precipitation --- photocatalyst --- dye degradation --- CuO/γ-Al2O3 --- ammonia electro-oxidation (AEO) --- nanocomposite structure --- XRD --- photoluminescence --- rare earth element REE --- heterogeneous catalysis --- perovskite --- CH3NH3PbI3 --- solar cells --- polysilane --- decaphenylcyclopentasilane --- stability --- chlorobenzene --- calculation --- Raman scattering --- lead-free --- NBT–BMN --- weight loss --- dielectric --- piezoelectric ceramics --- bimetallic nanoparticles --- kinetics --- antioxidant studies --- catalytic activity
Choose an application
The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.
6H-SiC --- Cu-Sn alloy --- ion implantation --- wettability --- interface --- nanoparticles --- dyes --- catalysis --- reduction --- glass/Kevlar --- hybrid composites --- hand layup --- epoxy --- hardener --- tensile --- hardness shore D --- water absorption --- density --- peel --- ratio --- Al2O3-Cr2O3 composite --- consolidation behavior --- microstructure --- mechanical properties --- thermal shock resistance --- ammonia electro-oxidation --- cyclic voltammetry --- electrochemical surface area (ECSA) --- electrocatalysts --- nanocomposites --- infrared detector --- resonant cavity --- energy applications --- absorptance --- Ce–Cu oxide --- co-precipitation --- photocatalyst --- dye degradation --- CuO/γ-Al2O3 --- ammonia electro-oxidation (AEO) --- nanocomposite structure --- XRD --- photoluminescence --- rare earth element REE --- heterogeneous catalysis --- perovskite --- CH3NH3PbI3 --- solar cells --- polysilane --- decaphenylcyclopentasilane --- stability --- chlorobenzene --- calculation --- Raman scattering --- lead-free --- NBT–BMN --- weight loss --- dielectric --- piezoelectric ceramics --- bimetallic nanoparticles --- kinetics --- antioxidant studies --- catalytic activity
Choose an application
The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.
Technology: general issues --- 6H-SiC --- Cu-Sn alloy --- ion implantation --- wettability --- interface --- nanoparticles --- dyes --- catalysis --- reduction --- glass/Kevlar --- hybrid composites --- hand layup --- epoxy --- hardener --- tensile --- hardness shore D --- water absorption --- density --- peel --- ratio --- Al2O3-Cr2O3 composite --- consolidation behavior --- microstructure --- mechanical properties --- thermal shock resistance --- ammonia electro-oxidation --- cyclic voltammetry --- electrochemical surface area (ECSA) --- electrocatalysts --- nanocomposites --- infrared detector --- resonant cavity --- energy applications --- absorptance --- Ce–Cu oxide --- co-precipitation --- photocatalyst --- dye degradation --- CuO/γ-Al2O3 --- ammonia electro-oxidation (AEO) --- nanocomposite structure --- XRD --- photoluminescence --- rare earth element REE --- heterogeneous catalysis --- perovskite --- CH3NH3PbI3 --- solar cells --- polysilane --- decaphenylcyclopentasilane --- stability --- chlorobenzene --- calculation --- Raman scattering --- lead-free --- NBT–BMN --- weight loss --- dielectric --- piezoelectric ceramics --- bimetallic nanoparticles --- kinetics --- antioxidant studies --- catalytic activity --- 6H-SiC --- Cu-Sn alloy --- ion implantation --- wettability --- interface --- nanoparticles --- dyes --- catalysis --- reduction --- glass/Kevlar --- hybrid composites --- hand layup --- epoxy --- hardener --- tensile --- hardness shore D --- water absorption --- density --- peel --- ratio --- Al2O3-Cr2O3 composite --- consolidation behavior --- microstructure --- mechanical properties --- thermal shock resistance --- ammonia electro-oxidation --- cyclic voltammetry --- electrochemical surface area (ECSA) --- electrocatalysts --- nanocomposites --- infrared detector --- resonant cavity --- energy applications --- absorptance --- Ce–Cu oxide --- co-precipitation --- photocatalyst --- dye degradation --- CuO/γ-Al2O3 --- ammonia electro-oxidation (AEO) --- nanocomposite structure --- XRD --- photoluminescence --- rare earth element REE --- heterogeneous catalysis --- perovskite --- CH3NH3PbI3 --- solar cells --- polysilane --- decaphenylcyclopentasilane --- stability --- chlorobenzene --- calculation --- Raman scattering --- lead-free --- NBT–BMN --- weight loss --- dielectric --- piezoelectric ceramics --- bimetallic nanoparticles --- kinetics --- antioxidant studies --- catalytic activity
Choose an application
Metallic oxides. --- Metal oxides --- Metals --- Oxides
Choose an application
Annotation
Choose an application
Choose an application
The book covers the synthesis, characterization, and applications of nanomaterials, synthesized using living organisms like bacteria, algae, fungi, plants, and biomolecules derived from them. This book is intended to meet the needs of undergraduate and graduate-level students of chemistry, biology, nanotechnology, and chemical engineering disciplines. The book will also serve as a useful reference work for researchers working in the fields of nanochemistry, material science, biology, and industrial chemistry. Features a systematic overview of the biogenic synthesis nanomaterial. Recent research results and pointers to the advancement in the field. Discuss putative applications of biogenic nanomaterials in health and the environment with a main emphasis on biocidal activity, disease diagnosis, drug delivery, and sensing and remediation of pollutants from the environment. This book is compiled in such a way that it aids in understanding the underpinning concepts of the biogenic synthesis of nanoparticles. The Biogenic synthesis of nanoparticles delivers more important and effective prospects for nanotechnology researchers. The biomass derived from various organisms acts as templates for the synthesis of nanoparticles with desired structural and featural aspects. The rewards of employing biomass and molecules derived from organism of choice in the synthesis process of nanoparticles are able to enhance the electrochemical consistency, control particle size, reduce toxicity, and escalate reactivity in an eco-friendly way. This book will provide the latest insights into the synthesis of nanomaterials employing biomass, cell extract, or as a whole, of various organisms and their roles in the health and remediation of the environment.
Nanostructured materials. --- Materials --- Biomedical engineering. --- Biosynthesis. --- Matériaux nanostructurés. --- Matériaux --- Biotechnologie appliquée à l'environnement. --- Génie biomédical. --- Biosynthèse. --- Industrial applications. --- Biotechnology. --- Biotechnologie.
Listing 1 - 8 of 8 |
Sort by
|