Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Choose an application
Crystalline conductors and superconductors based on organic molecules are a rapidly progressing field of solid-state science, comprising chemists, and experimental and theoretical physicists from all around the world. In focus are solids with electronic properties governed by delocalized π-electrons. Although carbon-based materials of various shades have gained enormous interest in recent years, charge transfer salts are still paradigmatic in this field. Progress in molecular design is achieved via tiny but ingenious modifications, as well as by fundamentally different approaches. The wealth of exciting physical phenomena is unprecedented and could not have been imagined when the field took off almost half a century ago. Organic low-dimensional conductors are prime examples of Luttinger liquids, exhibit a tendency toward Fermi surface instabilities, but can also be tuned across a dimensionality-driven phase diagram like no other system. Superconductivity comes at the border to ordered phases in the spin and charge sectors, and, at high fields, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is well established. The interplay between charge and magnetic order is still under debate, but electronic ferroelectricity is well established. After decades of intense search, the spin liquid state was first discovered in organic conductors when the amount of geometrical frustration and electronic correlations is just right. They drive the metal and superconductor into an insulating Mott state, solely via electron-electron interactions. However, what do we know about the effect of disorderCan we tune the electronic properties by pressure, by light, or by fieldResearch is still addressing basic questions, but devices are not out of reach. These are currently open questions, as well as hot and timely topics. The present Special Issue on "Advances in Organic Conductors and Superconductors" provides a status report summarizing the progress achieved in the last five years.
Choose an application
Crystalline conductors and superconductors based on organic molecules are a rapidly progressing field of solid-state science, comprising chemists, and experimental and theoretical physicists from all around the world. In focus are solids with electronic properties governed by delocalized π-electrons. Although carbon-based materials of various shades have gained enormous interest in recent years, charge transfer salts are still paradigmatic in this field. Progress in molecular design is achieved via tiny but ingenious modifications, as well as by fundamentally different approaches. The wealth of exciting physical phenomena is unprecedented and could not have been imagined when the field took off almost half a century ago. Organic low-dimensional conductors are prime examples of Luttinger liquids, exhibit a tendency toward Fermi surface instabilities, but can also be tuned across a dimensionality-driven phase diagram like no other system. Superconductivity comes at the border to ordered phases in the spin and charge sectors, and, at high fields, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is well established. The interplay between charge and magnetic order is still under debate, but electronic ferroelectricity is well established. After decades of intense search, the spin liquid state was first discovered in organic conductors when the amount of geometrical frustration and electronic correlations is just right. They drive the metal and superconductor into an insulating Mott state, solely via electron-electron interactions. However, what do we know about the effect of disorderCan we tune the electronic properties by pressure, by light, or by fieldResearch is still addressing basic questions, but devices are not out of reach. These are currently open questions, as well as hot and timely topics. The present Special Issue on "Advances in Organic Conductors and Superconductors" provides a status report summarizing the progress achieved in the last five years.
Choose an application
Choose an application
Crystalline conductors and superconductors based on organic molecules are a rapidly progressing field of solid-state science, comprising chemists, and experimental and theoretical physicists from all around the world. In focus are solids with electronic properties governed by delocalized π-electrons. Although carbon-based materials of various shades have gained enormous interest in recent years, charge transfer salts are still paradigmatic in this field. Progress in molecular design is achieved via tiny but ingenious modifications, as well as by fundamentally different approaches. The wealth of exciting physical phenomena is unprecedented and could not have been imagined when the field took off almost half a century ago. Organic low-dimensional conductors are prime examples of Luttinger liquids, exhibit a tendency toward Fermi surface instabilities, but can also be tuned across a dimensionality-driven phase diagram like no other system. Superconductivity comes at the border to ordered phases in the spin and charge sectors, and, at high fields, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is well established. The interplay between charge and magnetic order is still under debate, but electronic ferroelectricity is well established. After decades of intense search, the spin liquid state was first discovered in organic conductors when the amount of geometrical frustration and electronic correlations is just right. They drive the metal and superconductor into an insulating Mott state, solely via electron-electron interactions. However, what do we know about the effect of disorderCan we tune the electronic properties by pressure, by light, or by fieldResearch is still addressing basic questions, but devices are not out of reach. These are currently open questions, as well as hot and timely topics. The present Special Issue on "Advances in Organic Conductors and Superconductors" provides a status report summarizing the progress achieved in the last five years.
Choose an application
Solids --- Optical properties --- Electric properties --- Electromagnetism. Ferromagnetism --- Electronics and optics of solids --- Acqui 2006
Choose an application
The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.
Solids --- Optical properties. --- Electric properties. --- Solids - Optical properties --- Solids - Electric properties --- Acqui 2006
Choose an application
Listing 1 - 8 of 8 |
Sort by
|