Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This book presents recent mathematical methods in the area of inverse problems in imaging with a particular focus on the computational aspects and applications. The formulation of inverse problems in imaging requires accurate mathematical modeling in order to preserve the significant features of the image. The book describes computational methods to efficiently address these problems based on new optimization algorithms for smooth and nonsmooth convex minimization, on the use of structured (numerical) linear algebra, and on multilevel techniques. It also discusses various current and challenging applications in fields such as astronomy, microscopy, and biomedical imaging. The book is intended for researchers and advanced graduate students interested in inverse problems and imaging.
Diagnostic imaging --- Mathematics. --- Clinical imaging --- Imaging, Diagnostic --- Medical diagnostic imaging --- Medical imaging --- Noninvasive medical imaging --- Diagnosis, Noninvasive --- Imaging systems in medicine --- Computer mathematics. --- Mathematical physics. --- Applied mathematics. --- Engineering mathematics. --- Computational Mathematics and Numerical Analysis. --- Mathematical Applications in the Physical Sciences. --- Mathematical and Computational Engineering. --- Engineering --- Engineering analysis --- Mathematical analysis --- Physical mathematics --- Physics --- Computer mathematics --- Electronic data processing --- Mathematics
Choose an application
Choose an application
This book constitutes the proceedings of the 9th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2023, which took place in Santa Margherita di Pula, Italy, in May 2023.The 57 papers presented in this volume were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Inverse Problems in Imaging; Machine and Deep Learning in Imaging; Optimization for Imaging: Theory and Methods; Scale Space, PDEs, Flow, Motion and Registration.
Social sciences (general) --- Demography --- Mathematical statistics --- Mathematics --- Computer science --- Programming --- Computer architecture. Operating systems --- Computer. Automation --- computervisie --- patroonherkenning --- factoranalyse --- analytische chemie --- biochemie --- informatica --- sociale wetenschappen --- externe fixatie (geneeskunde --- programmeren (informatica) --- wiskunde --- computernetwerken --- Computer vision
Choose an application
This book constitutes the proceedings of the 9th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2023, which took place in Santa Margherita di Pula, Italy, in May 2023.The 57 papers presented in this volume were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Inverse Problems in Imaging; Machine and Deep Learning in Imaging; Optimization for Imaging: Theory and Methods; Scale Space, PDEs, Flow, Motion and Registration.
Engineering --- Technology & Engineering --- Computer vision
Choose an application
The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12–14, 2021. All contributions are original and not published elsewhere. The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult than in the integer case. Hence, numerical analysis plays a decisive role since practically every type of application of fractional calculus requires adequate numerical tools. The aim of this book is therefore to collect and spread ideas mainly coming from the two communities of numerical analysts operating in this field - the one working on methods for the solution of differential problems and the one working on the numerical linear algebra side - to share knowledge and create synergies. At the same time, the book intends to realize a direct bridge between researchers working on applications and numerical analysts. Indeed, the book collects papers on applications, numerical methods for differential problems of fractional order, and related aspects in numerical linear algebra. The target audience of the book is scholars interested in recent advancements in fractional calculus.
Differential equations. --- Mathematics --- Mathematical models. --- Numerical analysis. --- Differential Equations. --- Computational Mathematics and Numerical Analysis. --- Mathematical Modeling and Industrial Mathematics. --- Numerical Analysis. --- Data processing. --- Models, Mathematical --- Simulation methods --- 517.91 Differential equations --- Differential equations --- Mathematical analysis --- Equacions diferencials
Choose an application
The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12-14, 2021. All contributions are original and not published elsewhere. The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult than in the integer case. Hence, numerical analysis plays a decisive role since practically every type of application of fractional calculus requires adequate numerical tools. The aim of this book is therefore to collect and spread ideas mainly coming from the two communities of numerical analysts operating in this field - the one working on methods for the solution of differential problems and the one working on the numerical linear algebra side - to share knowledge and create synergies. At the same time, the book intends to realize a direct bridge between researchers working on applications and numerical analysts. Indeed, the book collects papers on applications, numerical methods for differential problems of fractional order, and related aspects in numerical linear algebra. The target audience of the book is scholars interested in recent advancements in fractional calculus.
Differential equations --- Numerical analysis --- Mathematics --- Planning (firm) --- Computer. Automation --- differentiaalvergelijkingen --- informatica --- mathematische modellen --- wiskunde --- numerieke analyse
Listing 1 - 6 of 6 |
Sort by
|