Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2017 (4)

2015 (4)

Listing 1 - 8 of 8
Sort by

Book
"One rotten apple spoils the whole barrel": The plant hormone ethylene, the small molecule and its complexity
Author:
ISBN: 2889196232 Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
"One rotten apple spoils the whole barrel": The plant hormone ethylene, the small molecule and its complexity
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The gaseous molecule ethylene (C2H4), which is small in size and simple in structure, is a plant hormone most often associated with fruit ripening yet has a diversity of effects throughout the plant life cycle. While its agricultural effects were known even in ancient Egypt, the complexity of its mode of action and the broad spectrum of its effects and potential uses in plant physiology remain important scientific challenges today. In the last few decades, the biochemical pathway of ethylene production has been uncovered, ethylene perception and signaling have been molecularly dissected, ethylene-responsive transcription factors have been identified and numerous effects of ethylene have been described, ranging from water stress, development, senescence, reproduction plant-pathogen interactions, and of course, ripening. Thus ethylene is involved in plant development, in biotic and abiotic stress, and in reproduction. There is no stage in plant life that is not affected by ethylene, modulated by a complex and fascinating molecular machinery.


Book
"One rotten apple spoils the whole barrel": The plant hormone ethylene, the small molecule and its complexity
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The gaseous molecule ethylene (C2H4), which is small in size and simple in structure, is a plant hormone most often associated with fruit ripening yet has a diversity of effects throughout the plant life cycle. While its agricultural effects were known even in ancient Egypt, the complexity of its mode of action and the broad spectrum of its effects and potential uses in plant physiology remain important scientific challenges today. In the last few decades, the biochemical pathway of ethylene production has been uncovered, ethylene perception and signaling have been molecularly dissected, ethylene-responsive transcription factors have been identified and numerous effects of ethylene have been described, ranging from water stress, development, senescence, reproduction plant-pathogen interactions, and of course, ripening. Thus ethylene is involved in plant development, in biotic and abiotic stress, and in reproduction. There is no stage in plant life that is not affected by ethylene, modulated by a complex and fascinating molecular machinery.


Book
"One rotten apple spoils the whole barrel": The plant hormone ethylene, the small molecule and its complexity
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The gaseous molecule ethylene (C2H4), which is small in size and simple in structure, is a plant hormone most often associated with fruit ripening yet has a diversity of effects throughout the plant life cycle. While its agricultural effects were known even in ancient Egypt, the complexity of its mode of action and the broad spectrum of its effects and potential uses in plant physiology remain important scientific challenges today. In the last few decades, the biochemical pathway of ethylene production has been uncovered, ethylene perception and signaling have been molecularly dissected, ethylene-responsive transcription factors have been identified and numerous effects of ethylene have been described, ranging from water stress, development, senescence, reproduction plant-pathogen interactions, and of course, ripening. Thus ethylene is involved in plant development, in biotic and abiotic stress, and in reproduction. There is no stage in plant life that is not affected by ethylene, modulated by a complex and fascinating molecular machinery.


Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Author:
ISBN: 2889450511 Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.


Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.


Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.

Listing 1 - 8 of 8
Sort by