Listing 1 - 5 of 5 |
Sort by
|
Choose an application
We are surrounded by data, numerical, categorical and otherwise, which must to be analyzed and processed to convert it into information that instructs, answers or aids understanding and decision making. Data analysts in many disciplines such as business, education or medicine, are frequently asked to analyze new data sets which are often composed of numerous tables possessing different properties. They try to find completely new correlations between attributes and show new possibilities for users. Action rules mining discusses some of data mining and knowledge discovery principles and then describe representative concepts, methods and algorithms connected with action. The author introduces the formal definition of action rule, notion of a simple association action rule and a representative action rule, the cost of association action rule, and gives a strategy how to construct simple association action rules of a lowest cost. A new approach for generating action rules from datasets with numerical attributes by incorporating a tree classifier and a pruning step based on meta-actions is also presented. In this book we can find fundamental concepts necessary for designing, using and implementing action rules as well. Detailed algorithms are provided with necessary explanation and illustrative examples.
Data mining --- Engineering & Applied Sciences --- Computer Science --- Data mining. --- Association rule mining. --- Association mining --- Association rules mining --- Mining, Association rule --- Algorithmic knowledge discovery --- Factual data analysis --- KDD (Information retrieval) --- Knowledge discovery in data --- Knowledge discovery in databases --- Mining, Data --- Engineering. --- Artificial intelligence. --- Computational intelligence. --- Computational Intelligence. --- Artificial Intelligence (incl. Robotics). --- Intelligence, Computational --- Artificial intelligence --- Soft computing --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Construction --- Industrial arts --- Technology --- Database searching --- Artificial Intelligence.
Choose an application
We are surrounded by data, numerical, categorical and otherwise, which must to be analyzed and processed to convert it into information that instructs, answers or aids understanding and decision making. Data analysts in many disciplines such as business, education or medicine, are frequently asked to analyze new data sets which are often composed of numerous tables possessing different properties. They try to find completely new correlations between attributes and show new possibilities for users. Action rules mining discusses some of data mining and knowledge discovery principles and then describe representative concepts, methods and algorithms connected with action. The author introduces the formal definition of action rule, notion of a simple association action rule and a representative action rule, the cost of association action rule, and gives a strategy how to construct simple association action rules of a lowest cost. A new approach for generating action rules from datasets with numerical attributes by incorporating a tree classifier and a pruning step based on meta-actions is also presented. In this book we can find fundamental concepts necessary for designing, using and implementing action rules as well. Detailed algorithms are provided with necessary explanation and illustrative examples.
Choose an application
Data Management is the process of planning, coordinating and controlling data resources. More often, applications need to store and search a large amount of data. Managing Data has been continuously challenged by demands from various areas and applications and has evolved in parallel with advances in hardware and computing techniques. This volume focuses on its recent advances and it is composed of five parts and a total of eighteen chapters. The first part of the book contains five contributions in the area of information retrieval & Web intelligence: a novel approach to solving index selection problem, integrated retrieval from Web of documents and data, bipolarity in database querying, deriving data summarization through ontologies, and granular computing for Web intelligence. The second part of the book contains four contributions in knowledge discovery area. Its third part contains three contributions in information integration & data security area. The remaining two parts of the book contain six contributions in the area of intelligent agents and applications of data management in medical domain.
Computer Science --- Applied Mathematics --- Civil Engineering --- Civil & Environmental Engineering --- Engineering & Applied Sciences --- Database management. --- Database security. --- Information storage and retrieval systems. --- Medicine --- Research --- Data processing. --- Clinical sciences --- Medical profession --- Automatic data storage --- Automatic information retrieval --- Automation in documentation --- Computer-based information systems --- Data processing systems --- Data storage and retrieval systems --- Discovery systems, Information --- Information discovery systems --- Information processing systems --- Information retrieval systems --- Machine data storage and retrieval --- Mechanized information storage and retrieval systems --- Data base security --- Databases --- Data base management --- Data services (Database management) --- Database management services --- DBMS (Computer science) --- Generalized data management systems --- Services, Database management --- Systems, Database management --- Systems, Generalized database management --- Security measures --- Computer science. --- Data structures (Computer science). --- Artificial intelligence. --- Applied mathematics. --- Engineering mathematics. --- Computer Science. --- Artificial Intelligence (incl. Robotics). --- Data Structures, Cryptology and Information Theory. --- Appl.Mathematics/Computational Methods of Engineering. --- Engineering --- Engineering analysis --- Mathematical analysis --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Information structures (Computer science) --- Structures, Data (Computer science) --- Structures, Information (Computer science) --- File organization (Computer science) --- Abstract data types (Computer science) --- Informatics --- Science --- Mathematics --- Human biology --- Life sciences --- Medical sciences --- Pathology --- Physicians --- Computer systems --- Electronic information resources --- Data libraries --- Digital libraries --- Information organization --- Information retrieval --- Computer security --- Data structures (Computer scienc. --- Artificial Intelligence. --- Data Structures and Information Theory. --- Mathematical and Computational Engineering.
Choose an application
Choose an application
Data Management is the process of planning, coordinating and controlling data resources. More often, applications need to store and search a large amount of data. Managing Data has been continuously challenged by demands from various areas and applications and has evolved in parallel with advances in hardware and computing techniques. This volume focuses on its recent advances and it is composed of five parts and a total of eighteen chapters. The first part of the book contains five contributions in the area of information retrieval & Web intelligence: a novel approach to solving index selection problem, integrated retrieval from Web of documents and data, bipolarity in database querying, deriving data summarization through ontologies, and granular computing for Web intelligence. The second part of the book contains four contributions in knowledge discovery area. Its third part contains three contributions in information integration & data security area. The remaining two parts of the book contain six contributions in the area of intelligent agents and applications of data management in medical domain.
Listing 1 - 5 of 5 |
Sort by
|