Listing 1 - 7 of 7 |
Sort by
|
Choose an application
During the past thirty years, strong relationships have interwoven the fields of dynamical systems, linear algebra and number theory. This rapport between different areas of mathematics has enabled the resolution of some important conjectures and has in fact given birth to new ones. This book sheds light on these relationships and their applications in an elementary setting, by showing that the study of curves on a surface can lead to orbits of a linear group or even to continued fraction expansions of real numbers. Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature −1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations. This book will appeal to those with a basic knowledge of differential geometry including graduate students and experts with a general interest in the area Françoise Dal’Bo is a professor of mathematics at the University of Rennes. Her research studies topological and metric dynamical systems in negative curvature and their applications especially to the areas of number theory and linear actions.
Differentiable dynamical systems. --- Global differential geometry. --- Differential dynamical systems --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- Mathematics. --- Dynamics. --- Ergodic theory. --- Differential geometry. --- Number theory. --- Dynamical Systems and Ergodic Theory. --- Number Theory. --- Differential Geometry. --- Geometry, Differential --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Number study --- Numbers, Theory of --- Algebra --- Differential geometry --- Ergodic transformations --- Continuous groups --- Mathematical physics --- Measure theory --- Transformations (Mathematics) --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics
Choose an application
Choose an application
Choose an application
The work of E. Hopf and G.A. Hedlund, in the 1930s, on transitivity and ergodicity of the geodesic flow for hyperbolic surfaces, marked the beginning of the investigation of the statistical properties and stochastic behavior of the flow. The first central limit theorem for the geodesic flow was proved in the 1960s by Y. Sinai for compact hyperbolic manifolds. Since then, strong relationships have been found between the fields of ergodic theory, analysis, and geometry. Different approaches and new tools have been developed to study the geodesic flow, including measure theory, thermodynamic formalism, transfer operators, Laplace operators, and Brownian motion. All these different points of view have led to a deep understanding of more general dynamical systems, in particular the so-called Anosov systems, with applications to geometric problems such as counting, equirepartition, mixing, and recurrence properties of the orbits. This book comprises two independent texts that provide a self-contained introduction to two different approaches to the investigation of hyperbolic dynamics. The first text, by S. Le Borgne, explains the method of martingales for the central limit theorem. This approach can be used in several situations, even for weakly hyperbolic flows, and the author presents a good number of examples and applications to equirepartition and mixing. The second text, by F. Faure and M. Tsujii, concerns the semiclassical approach, by operator theory: chaotic dynamics is described through the spectrum of the associated transfer operator, with applications to the asymptotic counting of periodic orbits. The book will be of interest for a broad audience, from PhD and Post-Doc students to experts working on geometry and dynamics.
Geodesic flows. --- Central limit theorem. --- Ergodic theory. --- Ergodic transformations --- Continuous groups --- Mathematical physics --- Measure theory --- Transformations (Mathematics) --- Asymptotic distribution (Probability theory) --- Limit theorems (Probability theory) --- Flows (Differentiable dynamical systems) --- Differentiable dynamical systems. --- Distribution (Probability theory. --- Operator theory. --- Global differential geometry. --- Dynamical Systems and Ergodic Theory. --- Probability Theory and Stochastic Processes. --- Operator Theory. --- Hyperbolic Geometry. --- Differential Geometry. --- Geometry, Differential --- Functional analysis --- Distribution functions --- Frequency distribution --- Characteristic functions --- Probabilities --- Differential dynamical systems --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Dynamics. --- Probabilities. --- Hyperbolic geometry. --- Differential geometry. --- Differential geometry --- Hyperbolic geometry --- Lobachevski geometry --- Lobatschevski geometry --- Geometry, Non-Euclidean --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- Dynamical systems --- Kinetics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics
Choose an application
During the past thirty years, strong relationships have interwoven the fields of dynamical systems, linear algebra and number theory. This rapport between different areas of mathematics has enabled the resolution of some important conjectures and has in fact given birth to new ones. This book sheds light on these relationships and their applications in an elementary setting, by showing that the study of curves on a surface can lead to orbits of a linear group or even to continued fraction expansions of real numbers. Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature â1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations. This book will appeal to those with a basic knowledge of differential geometry including graduate students and experts with a general interest in the area Françoise Dal'Bo is a professor of mathematics at the University of Rennes. Her research studies topological and metric dynamical systems in negative curvature and their applications especially to the areas of number theory and linear actions.
Choose an application
Choose an application
The work of E. Hopf and G.A. Hedlund, in the 1930s, on transitivity and ergodicity of the geodesic flow for hyperbolic surfaces, marked the beginning of the investigation of the statistical properties and stochastic behavior of the flow. The first central limit theorem for the geodesic flow was proved in the 1960s by Y. Sinai for compact hyperbolic manifolds. Since then, strong relationships have been found between the fields of ergodic theory, analysis, and geometry. Different approaches and new tools have been developed to study the geodesic flow, including measure theory, thermodynamic formalism, transfer operators, Laplace operators, and Brownian motion. All these different points of view have led to a deep understanding of more general dynamical systems, in particular the so-called Anosov systems, with applications to geometric problems such as counting, equirepartition, mixing, and recurrence properties of the orbits. This book comprises two independent texts that provide a self-contained introduction to two different approaches to the investigation of hyperbolic dynamics. The first text, by S. Le Borgne, explains the method of martingales for the central limit theorem. This approach can be used in several situations, even for weakly hyperbolic flows, and the author presents a good number of examples and applications to equirepartition and mixing. The second text, by F. Faure and M. Tsujii, concerns the semiclassical approach, by operator theory: chaotic dynamics is described through the spectrum of the associated transfer operator, with applications to the asymptotic counting of periodic orbits. The book will be of interest for a broad audience, from PhD and Post-Doc students to experts working on geometry and dynamics.
Differential geometry. Global analysis --- Operator theory --- Ergodic theory. Information theory --- Operational research. Game theory --- Probability theory --- Mathematics --- thermodynamica --- analyse (wiskunde) --- differentiaal geometrie --- waarschijnlijkheidstheorie --- stochastische analyse --- wiskunde --- kansrekening --- geometrie --- informatietheorie
Listing 1 - 7 of 7 |
Sort by
|