Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
This book is devoted to the spectral theory of commutative C*-algebras of Toeplitz operators on the Bergman space and its applications. For each such commutative algebra there is a unitary operator which reduces Toeplitz operators from this algebra to certain multiplication operators, thus providing their spectral type representations. This yields a powerful research tool giving direct access to the majority of the important properties of the Toeplitz operators studied herein, such as boundedness, compactness, spectral properties, invariant subspaces. The presence and exploitation of these spectral type representations forms the core for many results presented in the book. Among other results it contains a criterion of when the algebras are commutative on each commonly considered weighted Bergman space together with their explicit descriptions; a systematic study of Toeplitz operators with unbounded symbols; a clarification of the difference between compactness of commutators and semi-commutators of Toeplitz operators; the theory of Toeplitz and related operators with symbols having more than two limit values at boundary points; and a kind of semi-classical analysis of spectral properties of Toeplitz operators. The book is addressed to a wide audience of mathematicians, from graduate students to researchers, whose primary interests lie in complex analysis and operator theory.
Operator theory --- Functional analysis --- analyse (wiskunde) --- functies (wiskunde)
Choose an application
In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and additive and multiplicative perturbation results are given. The general theory of the first three chapters is then followed by applications to Wiener-Hopf factorization and Riccati equations, transport equations, diffusion equations of indefinite Sturm-Liouville type, noncausal infinite-dimensional linear continuous-time systems, and functional differential equations of mixed type.
Operator theory --- Differential equations --- differentiaalvergelijkingen --- analyse (wiskunde)
Choose an application
This book is designed to present some recent results on some nonlinear parabolic-hyp- bolic coupled systems arising from physics, mechanics and material science such as the compressible Navier-Stokes equations, thermo(visco)elastic systems and elastic systems. Some of the content of this book is based on research carried out by the author and his collaborators in recent years. Most of it has been previously published only in original papers,andsomeofthematerialhasneverbeenpublisheduntilnow.Therefore,theauthor hopes that the book will bene?t both the interested beginner in the ?eld and the expert. AllthemodelsunderconsiderationinChapters2-10arebuiltonnonlinearevolution equations that are parabolic-hyperbolic coupled systems of partial differential equations with time t as one of the independentvariables. This type of partial differential equations arises not only in many ?elds of mathematics, but also in other branches of science such as physics, mechanics and materials science, etc. For example, some models studied in this book, such as the compressible Navier-Stokes equations (a 1D heat conductive v- cous real gas and a polytropic ideal gas) from ?uid mechanics, and thermo(visco)elastic systemsfrommaterialsscience, are typicalexamplesof nonlinearevolutionaryequations. It is well known that the properties of solutions to nonlinear parabolic-hyperbolic coupledsystems are very different from those of parabolicor hyperbolicequations. Since the 1970s,more andmore mathematicianshave begunto focustheir interests onthe study of local well-posedness, global well-posedness and blow-up of solutions in a ?nite time.
Operator theory --- Partial differential equations --- differentiaalvergelijkingen --- analyse (wiskunde)
Choose an application
Operator theory and functional analysis have a long tradition, initially being guided by problems from mathematical physics and applied mathematics. Much of the work in Banach spaces from the 1930s onwards resulted from investigating how much real (and complex) variable function theory might be extended to fu- tions taking values in (function) spaces or operators acting in them. Many of the ?rst ideas in geometry, basis theory and the isomorphic theory of Banach spaces have vector measure-theoretic origins and can be credited (amongst others) to N. Dunford, I.M. Gelfand, B.J. Pettis and R.S. Phillips. Somewhat later came the penetratingcontributionsofA.Grothendieck,whichhavepervadedandin?uenced theshapeoffunctionalanalysisandthetheoryofvectormeasures/integrationever since. Today, each of the areas of functional analysis/operator theory, Banach spaces, and vector measures/integration is a strong discipline in its own right. However, it is not always made clear that these areas grew up together as cousins and that they had, and still have, enormous in?uences on one another. One of the aims of this monograph is to reinforce and make transparent precisely this important point.
Choose an application
Choose an application
Operator theory --- Functional analysis --- analyse (wiskunde) --- functies (wiskunde)
Choose an application
Operator theory --- Differential equations --- differentiaalvergelijkingen --- analyse (wiskunde)
Choose an application
Operator theory --- Partial differential equations --- differentiaalvergelijkingen --- analyse (wiskunde)
Choose an application
Operator theory --- Mathematical physics --- analyse (wiskunde) --- wiskunde --- fysica
Choose an application
Operator theory --- Functional analysis --- analyse (wiskunde) --- functies (wiskunde)
Listing 1 - 10 of 12 | << page >> |
Sort by
|