Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This textbook presents a comprehensive process-oriented approach to biogeochemistry that is intended to appeal to readers who want to go beyond a general exposure to topics in biogeochemistry, and instead are seeking a holistic understanding of the interplay of biotic and environmental drivers in the cycling of elements in forested watersheds. The book is organized around a core set of ecosystem processes and attributes that collectively help to generate the whole-system structure and function of a terrestrial ecosystem. In the first nine chapters, a conceptual framework is developed based on distinct soil, microbial, plant, atmospheric, hydrologic, and geochemical processes that are integrated in the element cycling behavior of watershed ecosystems. With that conceptual foundation in place, students then proceed to the final three chapters where they are challenged to think critically about integrated element cycling patterns; roles for biogeochemical models; the likely impacts of disturbance, stress, and management on watershed biogeochemistry; and linkages among patterns and processes in watersheds experiencing novel environmental changes. Included with the text are figures, tables of comparative data, extensive literature citations, a glossary of terms, an index, and a set of 24 biogeochemical problems with answers. The problems are intended to support chapter concepts and to demonstrate how critical thinking skills, simple algebra, and thoughtful human logic can be used to solve applied problems in biogeochemistry that might be encountered by a research scientist or a resource manager. Using this book as an introduction to biogeochemistry, students will achieve a level of subject mastery and disciplinary perspective that will permit them to see and to interpret the individual components, interactions, and synergies that are represented in the dynamic element cycling patterns of watershed ecosystems. Provides a unified emphasis on forested watershed ecosystems that is more process-oriented, comprehensive, and pedagogical than existing single watershed case studies; Delivers a coherent synthesis of biogeochemistry at the watershed ecosystem scale - the most common landscape unit for current research and resource management; Enables students to interpret the individual components, interactions, and synergies represented in the dynamic element cycling patterns of watershed ecosystem; Presents an operational manual that examines how forested watersheds work with respect to fundamental parts, processes, interrelationships, whole-system behavior, and responses to changing conditions.
Earth sciences. --- Geochemistry. --- Geobiology. --- Ecosystems. --- Ecology. --- Geoecology. --- Environmental geology. --- Earth Sciences. --- Biogeosciences. --- Geoecology/Natural Processes. --- Terrestial Ecology. --- Geoecology --- Environmental protection --- Physical geology --- Balance of nature --- Biology --- Bionomics --- Ecological processes --- Ecological science --- Ecological sciences --- Environment --- Environmental biology --- Oecology --- Environmental sciences --- Population biology --- Biocenoses --- Biocoenoses --- Biogeoecology --- Biological communities --- Biomes --- Biotic community ecology --- Communities, Biotic --- Community ecology, Biotic --- Ecological communities --- Ecosystems --- Natural communities --- Ecology --- Earth sciences --- Biosphere --- Chemical composition of the earth --- Chemical geology --- Geological chemistry --- Geology, Chemical --- Chemistry --- Geosciences --- Physical sciences --- Endangered ecosystems. --- Threatened ecosystems --- Biotic communities --- Nature conservation --- Forest ecology. --- Forest ecosystems --- Forests and forestry --- Ecology . --- Biotic communities.
Choose an application
This textbook presents a comprehensive process-oriented approach to biogeochemistry that is intended to appeal to readers who want to go beyond a general exposure to topics in biogeochemistry, and instead are seeking a holistic understanding of the interplay of biotic and environmental drivers in the cycling of elements in forested watersheds. The book is organized around a core set of ecosystem processes and attributes that collectively help to generate the whole-system structure and function of a terrestrial ecosystem. In the first nine chapters, a conceptual framework is developed based on distinct soil, microbial, plant, atmospheric, hydrologic, and geochemical processes that are integrated in the element cycling behavior of watershed ecosystems. With that conceptual foundation in place, students then proceed to the final three chapters where they are challenged to think critically about integrated element cycling patterns; roles for biogeochemical models; the likely impacts of disturbance, stress, and management on watershed biogeochemistry; and linkages among patterns and processes in watersheds experiencing novel environmental changes. Included with the text are figures, tables of comparative data, extensive literature citations, a glossary of terms, an index, and a set of 24 biogeochemical problems with answers. The problems are intended to support chapter concepts and to demonstrate how critical thinking skills, simple algebra, and thoughtful human logic can be used to solve applied problems in biogeochemistry that might be encountered by a research scientist or a resource manager. Using this book as an introduction to biogeochemistry, students will achieve a level of subject mastery and disciplinary perspective that will permit them to see and to interpret the individual components, interactions, and synergies that are represented in the dynamic element cycling patterns of watershed ecosystems. Provides a unified emphasis on forested watershed ecosystems that is more process-oriented, comprehensive, and pedagogical than existing single watershed case studies; Delivers a coherent synthesis of biogeochemistry at the watershed ecosystem scale - the most common landscape unit for current research and resource management; Enables students to interpret the individual components, interactions, and synergies represented in the dynamic element cycling patterns of watershed ecosystem; Presents an operational manual that examines how forested watersheds work with respect to fundamental parts, processes, interrelationships, whole-system behavior, and responses to changing conditions.
Geochemistry --- Biogeography --- General ecology and biosociology --- Pedology --- geochemie --- biogeografie --- ecologie --- ecosystemen
Choose an application
The goal of this book is to convey the rich perspectives, principles, and enchantment of ecology to a broad audience of students and lifelong learners. The book is based on the belief that the science of ecology is best understood by examining familiar ecosystems from the natural world and weaving fresh insights and ecological concepts into an ecosystems framework to reveal the patterns, processes, and interactions that are the foundation of sustainable living systems in our biosphere. In the spirit of that teaching philosophy, the core of this book focuses on specific ecosystems that are familiar to most of us (e.g., forests, wetlands, streams, lakes, and the like). Taken as a whole, the chapters of this text are intended to provide a conceptual framework and an intellectual pathway for understanding and interpreting the ecology of the biosphere using elements of population, community, ecosystem, and landscape ecology. Equipped with this toolkit of ecological literacy, readers and students will hopefully be better prepared to make personal, business, and civic or governmental decisions that are consistent with a healthy and sustainable Earth.
Biotic communities. --- Population biology. --- Bioclimatology. --- Landscape ecology. --- Urban ecology (Biology). --- Community and Population Ecology. --- Climate Change Ecology. --- Landscape Ecology. --- Urban Ecology. --- Ecology.
Choose an application
Nature protection --- Meteorology. Climatology --- General ecology and biosociology --- Environmental planning --- landschapsecologie --- ruimtelijke ordening --- ecologie --- klimaatverandering
Choose an application
Listing 1 - 5 of 5 |
Sort by
|