Listing 1 - 10 of 19 | << page >> |
Sort by
|
Choose an application
Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume “Stochastic Analysis 2010” provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.
Choose an application
Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume Stochastic Analysis 2010 provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.
Operational research. Game theory --- stochastische analyse --- kansrekening
Choose an application
The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. The book is intended as a reference for graduate students and researchers interested in the field. It is also suitable for use as a text for a graduate level course on stochastic filtering. Suitable exercises and solutions are included.
Filters (Mathematics). --- Stochastic processes. --- Stochastic processes --- Filters (Mathematics) --- Mathematics --- Physical Sciences & Mathematics --- Mathematical Statistics --- Random processes --- Mathematics. --- Economics, Mathematical. --- Numerical analysis. --- Probabilities. --- Control engineering. --- Robotics. --- Mechatronics. --- Probability Theory and Stochastic Processes. --- Control, Robotics, Mechatronics. --- Numerical Analysis. --- Quantitative Finance. --- Mechanical engineering --- Microelectronics --- Microelectromechanical systems --- Automation --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Programmable controllers --- Probability --- Statistical inference --- Combinations --- Chance --- Least squares --- Mathematical statistics --- Risk --- Mathematical analysis --- Economics --- Mathematical economics --- Econometrics --- Math --- Science --- Methodology --- Probabilities --- Distribution (Probability theory. --- Finance. --- Funding --- Funds --- Currency question --- Distribution functions --- Frequency distribution --- Characteristic functions --- Economics, Mathematical .
Choose an application
Introducing a groundbreaking framework for stochastic partial differential equations (SPDEs), this work presents three significant advancements over the traditional variational approach. Firstly, Stratonovich SPDEs are explicitly addressed. Widely used in physics, Stratonovich SPDEs have typically been converted to Ito form for mathematical treatment. While this conversion is understood heuristically, a comprehensive treatment in infinite dimensions has been lacking, primarily due to insufficient rigorous results on martingale properties. Secondly, the framework incorporates differential noise, assuming the noise operator is only bounded from a smaller Hilbert space into a larger one, rather than within the same space. This necessitates additional regularity in the Ito form to solve the original Stratonovich SPDE. This aspect has been largely overlooked, despite the increasing popularity of gradient-dependent Stratonovich noise in fluid dynamics and regularisation by noise studies. Lastly, the framework departs from the explicit duality structure (Gelfand Triple), which is typically expected in the study of analytically strong solutions. This extension builds on the classical variational framework established by Röckner and Pardoux, advancing it in all three key aspects. Explore this innovative approach that not only addresses existing challenges but also opens new avenues for research and application in SPDEs. .
Stochastic processes. --- Calculus. --- Stochastic Calculus.
Choose an application
Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume Stochastic Analysis 2010 provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.
Operational research. Game theory --- stochastische analyse --- kansrekening
Choose an application
Stochastic differential equations --- Nonlinear theories --- Filters (Mathematics)
Choose an application
Articles from many of the main contributors to recent progress in stochastic analysis are included in this volume, which provides a snapshot of the current state of the area and its ongoing developments. It constitutes the proceedings of the conference on "Stochastic Analysis and Applications" held at the University of Oxford and the Oxford-Man Institute during 23-27 September, 2013. The conference honored the 60th birthday of Professor Terry Lyons FLSW FRSE FRS, Wallis Professor of Mathematics, University of Oxford. Terry Lyons is one of the leaders in the field of stochastic analysis. His introduction of the notion of rough paths has revolutionized the field, both in theory and in practice. Stochastic Analysis is the branch of mathematics that deals with the analysis of dynamical systems affected by noise. It emerged as a core area of mathematics in the late 20th century and has subsequently developed into an important theory with a wide range of powerful and novel tools, and with impressive applications within and beyond mathematics. Many systems are profoundly affected by stochastic fluctuations and it is not surprising that the array of applications of Stochastic Analysis is vast and touches on many aspects of life. The present volume is intended for researchers and Ph.D. students in stochastic analysis and its applications, stochastic optimization and financial mathematics, as well as financial engineers and quantitative analysts.
Stochastic analysis --- Distribution (Probability theory. --- Differential equations, partial. --- Finance. --- Differential Equations. --- Probability Theory and Stochastic Processes. --- Partial Differential Equations. --- Quantitative Finance. --- Ordinary Differential Equations. --- 517.91 Differential equations --- Differential equations --- Funding --- Funds --- Economics --- Currency question --- Partial differential equations --- Distribution functions --- Frequency distribution --- Characteristic functions --- Probabilities --- Probabilities. --- Partial differential equations. --- Economics, Mathematical . --- Differential equations. --- Mathematical economics --- Econometrics --- Mathematics --- Probability --- Statistical inference --- Combinations --- Chance --- Least squares --- Mathematical statistics --- Risk --- Methodology --- Differential equations, Partial. --- Economics, Mathematical.
Choose an application
The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. The book is intended as a reference for graduate students and researchers interested in the field. It is also suitable for use as a text for a graduate level course on stochastic filtering. Suitable exercises and solutions are included.
Quantitative methods (economics) --- Operational research. Game theory --- Numerical analysis --- Applied physical engineering --- Financial analysis --- procesautomatisering --- stochastische analyse --- financiële analyse --- kansrekening --- numerieke analyse --- regeltechniek
Choose an application
Articles from many of the main contributors to recent progress in stochastic analysis are included in this volume, which provides a snapshot of the current state of the area and its ongoing developments. It constitutes the proceedings of the conference on "Stochastic Analysis and Applications" held at the University of Oxford and the Oxford-Man Institute during 23-27 September, 2013. The conference honored the 60th birthday of Professor Terry Lyons FLSW FRSE FRS, Wallis Professor of Mathematics, University of Oxford. Terry Lyons is one of the leaders in the field of stochastic analysis. His introduction of the notion of rough paths has revolutionized the field, both in theory and in practice. Stochastic Analysis is the branch of mathematics that deals with the analysis of dynamical systems affected by noise. It emerged as a core area of mathematics in the late 20th century and has subsequently developed into an important theory with a wide range of powerful and novel tools, and with impressive applications within and beyond mathematics. Many systems are profoundly affected by stochastic fluctuations and it is not surprising that the array of applications of Stochastic Analysis is vast and touches on many aspects of life. The present volume is intended for researchers and Ph.D. students in stochastic analysis and its applications, stochastic optimization and financial mathematics, as well as financial engineers and quantitative analysts.
Quantitative methods (economics) --- Finance --- Partial differential equations --- Differential equations --- Operational research. Game theory --- Probability theory --- Mathematics --- Financial analysis --- differentiaalvergelijkingen --- financieel management --- waarschijnlijkheidstheorie --- stochastische analyse --- financiële analyse --- wiskunde --- kansrekening
Choose an application
"We analyze a class of nonlinear partial differential equations (PDEs) defined on Rd P2pRdq, where P2pRdq is the Wasserstein space of probability measures on Rd with a finite second-order moment. We show that such equations admit a classical solutions for sufficiently small time intervals. Under additional constraints, we prove that their solution can be extended to arbitrary large intervals. These nonlinear PDEs arise in the recent developments in the theory of large population stochastic control. More precisely they are the so-called master equations corresponding to asymptotic equilibria for a large population of controlled players with mean-field interaction and subject to minimization constraints. The results in the paper are deduced by exploiting this connection. In particular, we study the differentiability with respect to the initial condition of the flow generated by a forward-backward stochastic system of McKean-Vlasov type. As a byproduct, we prove that the decoupling field generated by the forward-backward system is a classical solution of the corresponding master equation. Finally, we give several applications to meanfield games and to the control of McKean-Vlasov diffusion processes"--
Stochastic analysis. --- Stochastic control theory. --- Systems theory; control -- Stochastic systems and control -- Optimal stochastic control. --- Probability theory and stochastic processes -- Stochastic analysis -- Applications of stochastic analysis (to PDE, etc.). --- Probability theory and stochastic processes -- Special processes -- Interacting random processes; statistical mechanics type models; percolation theory.
Listing 1 - 10 of 19 | << page >> |
Sort by
|