Narrow your search

Library

AP (3)

KDG (3)

KU Leuven (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (3)

digital (3)


Language

English (6)


Year
From To Submit

2018 (2)

2016 (2)

2015 (2)

Listing 1 - 6 of 6
Sort by

Book
Granular Computing Based Machine Learning : A Big Data Processing Approach
Authors: ---
ISBN: 3319700588 331970057X Year: 2018 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores the significant role of granular computing in advancing machine learning towards in-depth processing of big data. It begins by introducing the main characteristics of big data, i.e., the five Vs—Volume, Velocity, Variety, Veracity and Variability. The book explores granular computing as a response to the fact that learning tasks have become increasingly more complex due to the vast and rapid increase in the size of data, and that traditional machine learning has proven too shallow to adequately deal with big data.     Some popular types of traditional machine learning are presented in terms of their key features and limitations in the context of big data. Further, the book discusses why granular-computing-based machine learning is called for, and demonstrates how granular computing concepts can be used in different ways to advance machine learning for big data processing. Several case studies involving big data are presented by using biomedical data and sentiment data, in order to show the advances in big data processing through the shift from traditional machine learning to granular-computing-based machine learning. Finally, the book stresses the theoretical significance, practical importance, methodological impact and philosophical aspects of granular-computing-based machine learning, and suggests several further directions for advancing machine learning to fit the needs of modern industries. This book is aimed at PhD students, postdoctoral researchers and academics who are actively involved in fundamental research on machine learning or applied research on data mining and knowledge discovery, sentiment analysis, pattern recognition, image processing, computer vision and big data analytics. It will also benefit a broader audience of researchers and practitioners who are actively engaged in the research and development of intelligent systems.


Digital
Granular Computing Based Machine Learning : A Big Data Processing Approach
Authors: ---
ISBN: 9783319700588 Year: 2018 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores the significant role of granular computing in advancing machine learning towards in-depth processing of big data. It begins by introducing the main characteristics of big data, i.e., the five Vs—Volume, Velocity, Variety, Veracity and Variability. The book explores granular computing as a response to the fact that learning tasks have become increasingly more complex due to the vast and rapid increase in the size of data, and that traditional machine learning has proven too shallow to adequately deal with big data.     Some popular types of traditional machine learning are presented in terms of their key features and limitations in the context of big data. Further, the book discusses why granular-computing-based machine learning is called for, and demonstrates how granular computing concepts can be used in different ways to advance machine learning for big data processing. Several case studies involving big data are presented by using biomedical data and sentiment data, in order to show the advances in big data processing through the shift from traditional machine learning to granular-computing-based machine learning. Finally, the book stresses the theoretical significance, practical importance, methodological impact and philosophical aspects of granular-computing-based machine learning, and suggests several further directions for advancing machine learning to fit the needs of modern industries. This book is aimed at PhD students, postdoctoral researchers and academics who are actively involved in fundamental research on machine learning or applied research on data mining and knowledge discovery, sentiment analysis, pattern recognition, image processing, computer vision and big data analytics. It will also benefit a broader audience of researchers and practitioners who are actively engaged in the research and development of intelligent systems.


Book
Rule Based Systems for Big Data : A Machine Learning Approach
Authors: --- ---
ISBN: 3319236954 3319236962 9783319236957 Year: 2016 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.


Digital
Rule Based Systems for Big Data : A Machine Learning Approach
Authors: --- ---
ISBN: 9783319236964 Year: 2016 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.


Book
Advances in Social Media Analysis
Authors: --- --- ---
ISBN: 9783319184586 3319184571 9783319184579 331918458X Year: 2015 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis.  .


Digital
Advances in Social Media Analysis
Authors: --- --- ---
ISBN: 9783319184586 9783319184593 9783319184579 9783319356181 Year: 2015 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis. .

Listing 1 - 6 of 6
Sort by