Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Field-effect transistors --- Integrated circuits --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Electrical Engineering --- Computer simulation --- Transistors. --- Electronics --- Semiconductors
Choose an application
This book explains FinFET modeling for IC simulation and the industry standard - BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. It gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. You will learn: why you should use FinFET; physics and operation of FinFET; details of the FinFET standard model (BSIM-CMG); parameter extraction in BSIM-CMG; FinFET circuit design and simulation. --
Choose an application
Transistors --- materials --- simulation methods.
Choose an application
Industry Standard FDSOI Compact Model BSIM-IMG for IC Design helps readers develop an understanding of a FDSOI device and its simulation model. It covers the physics and operation of the FDSOI device, explaining not only how FDSOI enables further scaling, but also how it offers unique possibilities in circuits. Following chapters cover the industry standard compact model BSIM-IMG for FDSOI devices. The book addresses core surface-potential calculations and the plethora of real devices and potential effects. Written by the original developers of the industrial standard model, this book is an excellent reference for the new BSIM-IMG compact model for emerging FDSOI technology. The authors include chapters on step-by-step parameters extraction procedure for BSIM-IMG model and rigorous industry grade tests that the BSIM-IMG model has undergone. There is also a chapter on analog and RF circuit design in FDSOI technology using the BSIM-IMG model. Provides a detailed discussion of the BSIM-IMG model and the industry standard simulation model for FDSOI, all presented by the developers of the model. Explains the complex operation of the FDSOI device and its use of two independent control inputs. Addresses the parameter extraction challenges for those using this model.
Semiconductors. --- Nanoelectromechanical systems. --- Nano-electro-mechanical systems --- Nanoelectromechanical devices --- Nanomechanical devices --- Nanomechanical machines --- Nanomechanical systems --- Nanometer scale devices --- Nanoscale devices --- Nanoscale electronic devices --- Nanostructured devices --- NEMS (Nanotechnology) --- Nanoelectronics --- Nanostructures --- Crystalline semiconductors --- Semi-conductors --- Semiconducting materials --- Semiconductor devices --- Crystals --- Electrical engineering --- Electronics --- Solid state electronics --- Materials --- Electromechanical devices
Choose an application
Industry Standard FDSOI Compact Model BSIM-IMG for IC Design helps readers develop an understanding of a FDSOI device and its simulation model. It covers the physics and operation of the FDSOI device, explaining not only how FDSOI enables further scaling, but also how it offers unique possibilities in circuits. Following chapters cover the industry standard compact model BSIM-IMG for FDSOI devices. The book addresses core surface-potential calculations and the plethora of real devices and potential effects. Written by the original developers of the industrial standard model, this book is an excellent reference for the new BSIM-IMG compact model for emerging FDSOI technology. The authors include chapters on step-by-step parameters extraction procedure for BSIM-IMG model and rigorous industry grade tests that the BSIM-IMG model has undergone. There is also a chapter on analog and RF circuit design in FDSOI technology using the BSIM-IMG model. Provides a detailed discussion of the BSIM-IMG model and the industry standard simulation model for FDSOI, all presented by the developers of the modelExplains the complex operation of the FDSOI device and its use of two independent control inputsAddresses the parameter extraction challenges for those using this model
Listing 1 - 5 of 5 |
Sort by
|