Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

UGent (3)

ULB (3)

ULiège (3)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2023 (4)

2020 (4)

2019 (4)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Artificial Intelligence Techniques in Hydrology and Water Resources Management
Author:
ISBN: 303657784X Year: 2023 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Advances in Hydrologic Forecasts and Water Resources Management
Author:
ISBN: 3039368044 3039368052 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

Research & information: general --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

Research & information: general --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Flood Forecasting Using Machine Learning Methods
Author:
ISBN: 3038975486 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Artificial Intelligence Techniques in Hydrology and Water Resources Management
Authors: --- ---
Year: 2023 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The sustainable management of water cycles is crucial in the context of climate change and global warming. It involves managing global, regional, and local water cycles, as well as urban, agricultural, and industrial water cycles, to conserve water resources and their relationships with energy, food, microclimates, biodiversity, ecosystem functioning, and anthropogenic activities. Hydrological modeling is indispensable for achieving this goal, as it is essential for water resources management and the mitigation of natural disasters. In recent decades, the application of artificial intelligence (AI) techniques in hydrology and water resources management has led to notable advances. In the face of hydro-geo-meteorological uncertainty, AI approaches have proven to be powerful tools for accurately modeling complex, nonlinear hydrological processes and effectively utilizing various digital and imaging data sources, such as ground gauges, remote sensing tools, and in situ Internet of Things (IoT) devices. The thirteen research papers published in this Special Issue make significant contributions to long- and short-term hydrological modeling and water resources management under changing environments using AI techniques coupled with various analytics tools. These contributions, which cover hydrological forecasting, microclimate control, and climate adaptation, can promote hydrology research and direct policy making toward sustainable and integrated water resources management.

Keywords

Hydrology.


Book
Flood Forecasting Using Machine Learning Methods
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model


Book
Artificial Intelligence Techniques in Hydrology and Water Resources Management
Authors: --- ---
Year: 2023 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The sustainable management of water cycles is crucial in the context of climate change and global warming. It involves managing global, regional, and local water cycles, as well as urban, agricultural, and industrial water cycles, to conserve water resources and their relationships with energy, food, microclimates, biodiversity, ecosystem functioning, and anthropogenic activities. Hydrological modeling is indispensable for achieving this goal, as it is essential for water resources management and the mitigation of natural disasters. In recent decades, the application of artificial intelligence (AI) techniques in hydrology and water resources management has led to notable advances. In the face of hydro-geo-meteorological uncertainty, AI approaches have proven to be powerful tools for accurately modeling complex, nonlinear hydrological processes and effectively utilizing various digital and imaging data sources, such as ground gauges, remote sensing tools, and in situ Internet of Things (IoT) devices. The thirteen research papers published in this Special Issue make significant contributions to long- and short-term hydrological modeling and water resources management under changing environments using AI techniques coupled with various analytics tools. These contributions, which cover hydrological forecasting, microclimate control, and climate adaptation, can promote hydrology research and direct policy making toward sustainable and integrated water resources management.

Keywords

Hydrology.


Book
Flood Forecasting Using Machine Learning Methods
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model

Listing 1 - 10 of 12 << page
of 2
>>
Sort by