Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULB (1)

ULiège (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2014 (4)

Listing 1 - 4 of 4
Sort by

Book
Genome-wide view on the physiology of vitamin D
Author:
ISBN: 2889193497 Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords


Book
Genome-wide view on the physiology of vitamin D
Author:
Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The main physiological actions of the biologically most active metabolite of vitamin D, 1a,25-dihydroxyvitamin D3(1a,25(OH)2D3), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1a,25(OH)2D3 action are in the control of immune functions, cellular growth and differentiation. This fits both with the widespread expression of the VDR and the above described consequences of vitamin D deficiency. Transcriptome-wide analysis indicated that per cell type between 200 and 600 genes are primary targets of vitamin D. Since most of these genes respond to vitamin D in a cell-specific fashion, the total number of vitamin D targets in the human genome is far higher than 1,000. This is supported by the genome-wide view on VDR binding sites in human lymphocytes, monocytes, colon and hepatic cells. All genomic actions of 1a,25(OH)2D3 are mediated by the transcription factor vitamin D receptor (VDR) that has been the subject of intense study since the 1980’s. Thus, vitamin D signaling primarily implies the molecular actions of the VDR. In this research topic, we present in 15 chapters different perspectives on the action of vitamin D and its receptor, such as the impact of the genomewide distribution of VDR binding loci, ii) the transcriptome- and proteome-wide effects of vitamin D, iii) the role of vitamin D in health, iv) tissue-specific functions of vitamin D and v) the involvement of vitamin D in different diseases, such as infections, autoimmune diseases, diabetes and different types of cancer.


Book
Genome-wide view on the physiology of vitamin D
Author:
Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The main physiological actions of the biologically most active metabolite of vitamin D, 1a,25-dihydroxyvitamin D3(1a,25(OH)2D3), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1a,25(OH)2D3 action are in the control of immune functions, cellular growth and differentiation. This fits both with the widespread expression of the VDR and the above described consequences of vitamin D deficiency. Transcriptome-wide analysis indicated that per cell type between 200 and 600 genes are primary targets of vitamin D. Since most of these genes respond to vitamin D in a cell-specific fashion, the total number of vitamin D targets in the human genome is far higher than 1,000. This is supported by the genome-wide view on VDR binding sites in human lymphocytes, monocytes, colon and hepatic cells. All genomic actions of 1a,25(OH)2D3 are mediated by the transcription factor vitamin D receptor (VDR) that has been the subject of intense study since the 1980’s. Thus, vitamin D signaling primarily implies the molecular actions of the VDR. In this research topic, we present in 15 chapters different perspectives on the action of vitamin D and its receptor, such as the impact of the genomewide distribution of VDR binding loci, ii) the transcriptome- and proteome-wide effects of vitamin D, iii) the role of vitamin D in health, iv) tissue-specific functions of vitamin D and v) the involvement of vitamin D in different diseases, such as infections, autoimmune diseases, diabetes and different types of cancer.


Book
Genome-wide view on the physiology of vitamin D
Author:
Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The main physiological actions of the biologically most active metabolite of vitamin D, 1a,25-dihydroxyvitamin D3(1a,25(OH)2D3), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1a,25(OH)2D3 action are in the control of immune functions, cellular growth and differentiation. This fits both with the widespread expression of the VDR and the above described consequences of vitamin D deficiency. Transcriptome-wide analysis indicated that per cell type between 200 and 600 genes are primary targets of vitamin D. Since most of these genes respond to vitamin D in a cell-specific fashion, the total number of vitamin D targets in the human genome is far higher than 1,000. This is supported by the genome-wide view on VDR binding sites in human lymphocytes, monocytes, colon and hepatic cells. All genomic actions of 1a,25(OH)2D3 are mediated by the transcription factor vitamin D receptor (VDR) that has been the subject of intense study since the 1980’s. Thus, vitamin D signaling primarily implies the molecular actions of the VDR. In this research topic, we present in 15 chapters different perspectives on the action of vitamin D and its receptor, such as the impact of the genomewide distribution of VDR binding loci, ii) the transcriptome- and proteome-wide effects of vitamin D, iii) the role of vitamin D in health, iv) tissue-specific functions of vitamin D and v) the involvement of vitamin D in different diseases, such as infections, autoimmune diseases, diabetes and different types of cancer.

Listing 1 - 4 of 4
Sort by