Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
This book examines the conditions for the semi-boundedness of partial differential operators, which are interpreted in different ways. For example, today we know a great deal about L2-semibounded differential and pseudodifferential operators, although their complete characterization in analytic terms still poses difficulties, even for fairly simple operators. In contrast, until recently almost nothing was known about analytic characterizations of semi-boundedness for differential operators in other Hilbert function spaces and in Banach function spaces. This book works to address that gap. As such, various types of semi-boundedness are considered and a number of relevant conditions which are either necessary and sufficient or best possible in a certain sense are presented. The majority of the results reported on are the authors’ own contributions.
Differential operators. --- Operators, Differential --- Differential equations --- Operator theory --- Operator theory. --- Differential equations, partial. --- Operator Theory. --- Partial Differential Equations. --- Partial differential equations --- Functional analysis --- Partial differential equations.
Choose an application
This book examines the conditions for the semi-boundedness of partial differential operators, which are interpreted in different ways. For example, today we know a great deal about L2-semibounded differential and pseudodifferential operators, although their complete characterization in analytic terms still poses difficulties, even for fairly simple operators. In contrast, until recently almost nothing was known about analytic characterizations of semi-boundedness for differential operators in other Hilbert function spaces and in Banach function spaces. This book works to address that gap. As such, various types of semi-boundedness are considered and a number of relevant conditions which are either necessary and sufficient or best possible in a certain sense are presented. The majority of the results reported on are the authors’ own contributions.
Mathematics --- Operator theory --- Partial differential equations --- Differential equations --- differentiaalvergelijkingen --- analyse (wiskunde) --- wiskunde
Choose an application
This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.
Choose an application
This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.
Differential equations, Partial. --- Mathematical physics. --- Differential equations, Partial --- Mathematics --- Calculus --- Physical Sciences & Mathematics --- Mathematics. --- Math --- Mathematical analysis. --- Analysis (Mathematics). --- Operator theory. --- Partial differential equations. --- Analysis. --- Partial Differential Equations. --- Operator Theory. --- Science --- Partial differential equations --- Functional analysis --- 517.1 Mathematical analysis --- Mathematical analysis --- Global analysis (Mathematics). --- Differential equations, partial. --- Analysis, Global (Mathematics) --- Differential topology --- Functions of complex variables --- Geometry, Algebraic
Listing 1 - 7 of 7 |
Sort by
|