Narrow your search

Library

ULB (10)

KU Leuven (7)

AP (4)

KDG (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UAntwerpen (4)

UCLL (4)

ULiège (4)

More...

Resource type

book (17)

digital (4)


Language

English (11)

German (9)


Year
From To Submit

2022 (2)

2020 (1)

2018 (2)

2014 (3)

2013 (3)

More...
Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Book
Algebraic Geometry and Commutative Algebra
Author:
ISBN: 1447148282 1447148290 Year: 2013 Publisher: London : Springer London : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Algebraic geometry is a fascinating branch of mathematics that combines methods from both algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry (algebraic number theory, for example). The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts whilst more advanced readers can use the book to broaden their view on the subject. A separate part studies the necessary prerequisites from commutative algebra. The book provides an accessible and self-contained introduction to algebraic geometry, up to an advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. Therefore the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.


Book
Algebra : From the Viewpoint of Galois Theory
Author:
ISBN: 3319951777 3319951769 3319951785 Year: 2018 Publisher: Cham : Springer International Publishing : Imprint: Birkhäuser,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large part of abstract algebra, and according to this, algebraic equations are visible as a guiding thread throughout the book. To underline this point, an introduction to the history of algebraic equations is included. The entire book is self-contained, up to a few prerequisites from linear algebra. It covers most topics of current algebra courses and is enriched by several optional sections that complement the standard program or, in some cases, provide a first view on nearby areas that are more advanced. Every chapter begins with an introductory section on "Background and Overview," motivating the material that follows and discussing its highlights on an informal level. Furthermore, each section ends with a list of specially adapted exercises, some of them with solution proposals in the appendix. The present English edition is a translation and critical revision of the eighth German edition of the Algebra book by the author. The book appeared for the first time in 1993 and, in later years, was complemented by adding a variety of related topics. At the same time it was modified and polished to keep its contents up to date.


Book
Lectures on Formal and Rigid Geometry
Author:
ISBN: 3319044168 3319044176 9783319044163 Year: 2014 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A first version of this work appeared in 2005 as a Preprint of the Collaborative Research Center "Geometrical Structures in Mathematics" at the University of Münster. Its aim was to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of the original preprint and has been published at the suggestion of several experts in the field.


Book
Algebra
Author:
ISBN: 3540604103 Year: 1996 Publisher: Berlin Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Algebra


Digital
Algebraic Geometry and Commutative Algebra
Author:
ISBN: 9781447148296 Year: 2013 Publisher: London Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Algebraic geometry is a fascinating branch of mathematics that combines methods from both algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry (algebraic number theory, for example). The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts whilst more advanced readers can use the book to broaden their view on the subject. A separate part studies the necessary prerequisites from commutative algebra. The book provides an accessible and self-contained introduction to algebraic geometry, up to an advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. Therefore the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.


Digital
Lectures on Formal and Rigid Geometry
Author:
ISBN: 9783319044170 Year: 2014 Publisher: Cham Springer International Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

A first version of this work appeared in 2005 as a Preprint of the Collaborative Research Center "Geometrical Structures in Mathematics" at the University of Münster. Its aim was to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of the original preprint and has been published at the suggestion of several experts in the field.


Digital
Algebra : From the Viewpoint of Galois Theory
Author:
ISBN: 9783319951775 Year: 2018 Publisher: Cham Springer International Publishing, Imprint: Birkhäuser

Loading...
Export citation

Choose an application

Bookmark

Abstract

The material presented here can be divided into two parts. The first, sometimes referred to as abstract algebra, is concerned with the general theory of algebraic objects such as groups, rings, and fields, hence, with topics that are also basic for a number of other domains in mathematics. The second centers around Galois theory and its applications. Historically, this theory originated from the problem of studying algebraic equations, a problem that, after various unsuccessful attempts to determine solution formulas in higher degrees, found its complete clarification through the brilliant ideas of E. Galois. The study of algebraic equations has served as a motivating terrain for a large part of abstract algebra, and according to this, algebraic equations are visible as a guiding thread throughout the book. To underline this point, an introduction to the history of algebraic equations is included. The entire book is self-contained, up to a few prerequisites from linear algebra. It covers most topics of current algebra courses and is enriched by several optional sections that complement the standard program or, in some cases, provide a first view on nearby areas that are more advanced. Every chapter begins with an introductory section on "Background and Overview," motivating the material that follows and discussing its highlights on an informal level. Furthermore, each section ends with a list of specially adapted exercises, some of them with solution proposals in the appendix. The present English edition is a translation and critical revision of the eighth German edition of the Algebra book by the author. The book appeared for the first time in 1993 and, in later years, was complemented by adding a variety of related topics. At the same time it was modified and polished to keep its contents up to date.


Multi
Algebraic Geometry and Commutative Algebra
Author:
ISBN: 9781447175230 9781447175223 9781447175247 Year: 2022 Publisher: London Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.

Lineare Algebra
Author:
ISBN: 3540418539 Year: 2001 Publisher: Berlin Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Algebra


Book
Lineare Algebra
Author:
ISBN: 3540764380 Year: 2008 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Die Theorie der Linearen Algebra, ursprünglich aus der analytischen Geometrie hervorgegangen, hat heute die engen Grenzen geometrischer Problemstellungen weit überschritten und ist für nahezu alle Gebiete der Mathematik von grundlegender Bedeutung. Dieses Lehrbuch, das nun in einer vierten Auflage vorliegt, bietet eine systematische Einführung in die Lineare Algebra und entspricht in seinem stofflichen Umfang einer zweisemestrigen Anfängervorlesung, so wie sie an vielen Universitäten als Einführungsveranstaltung für Studierende mit Haupt- oder Nebenfach Mathematik sowie Studienziel Bachelor/Master, Diplom oder Staatsexamen gehalten wird. Im Text wird besonderer Wert auf eine sorgfältige Entwicklung der in der Linearen Algebra gebräuchlichen Begriffsbildungen gelegt, wobei jedes Kapitel mit einer Darlegung der zugehörigen motivierenden geometrischen Ideen beginnt. Umfangreiches und direkt auf die einzelnen Themen bezogenes Übungsmaterial rundet die Darstellung ab.

Listing 1 - 10 of 20 << page
of 2
>>
Sort by