Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Signi?cant advances in stem cell research and their potentials for therap- tic applications have attracted the attention of the scienti?c community and captured the imagination of society as a whole. Not so long ago, the study of most stem cells, other than those that regenerated the haematopoietic system, was rather obscure and limited to a relatively small number of researchers and laboratories. The uproar over stem cells really began in 1998 with the s- cessful derivation of pluripotent human embryonic stem (ES) cells by James Thomson and co-workers. This breakthrough and the subsequent generation of specialized human cells in vitro led to a paradigm shift within the sci- ti?c community, which transformed this specialized endeavour from a topic of scienti?c interest to a line of investigation with the potential to generate cells - pable of treating serious ailments, including diabetes, cardiovascular diseases and neurodegenerative disorders. Thus the dawn of regenerative medicine has spawned from the somewhat esoteric study of stem cells. Since 1998, extensive research endeavours have been devoted to the study of both embryonic and adult stem cells. Early reports suggested that adult stem cells had a higher plasticity than previously believed, perhaps even comparable with that demonstrated by embryonic stem cells, but several observations of the so-called transdifferentiation capacity and plasticity of adult stem cells have not been repeated. These reports, however, encouraged on-going debates about the capacity of adult versus embryonic stem cells and their potential use in regenerative medicine.
Stem cells --- Cells --- Organisms --- Cytology --- Colony-forming units (Cells) --- Mother cells --- Progenitor cells
Choose an application
This volume provides readers with the latest techniques and tools to assess modifications and functions of the surfaceome. The chapters in this book are divided into 4 sections: discovery-based approaches to surfaceome content; targeted approaches for surfaceome content; cell-based function analyses related to surfaceome content; and computational approaches in surfaceome studies. Section 1 focuses on discovery-based approaches for cataloging surfaceome content that analyses the surfaceome of bacteria, avian embryos, and mammalian systems. Section 2 discusses methods that over-express specific targets in Sf9 cells and generate bi-specific antibodies for targeting cancer and somatic cells. Section 3 explores voltage dependent sodium channels and high-content electrophysiological analyses. The final section looks at the new web-based platform known as targets-search. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and thorough, Surfaceome: Methods and Protocols assists in the study of cell surface protein biology and function. It is a valuable resource for all researchers interested in this field.
Cytology. --- Cell Biology. --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists
Choose an application
Pharmacology. Therapy --- Human genetics --- Neuropathology --- neurologie --- medische genetica --- farmacologie --- stamcellen --- toxicologie --- stamceltransplantatie
Choose an application
Pharmacology. Therapy --- Human genetics --- Neuropathology --- neurologie --- medische genetica --- farmacologie --- stamcellen --- genetica --- toxicologie --- stamceltransplantatie
Choose an application
Signi?cant advances in stem cell research and their potentials for therap- tic applications have attracted the attention of the scienti?c community and captured the imagination of society as a whole. Not so long ago, the study of most stem cells, other than those that regenerated the haematopoietic system, was rather obscure and limited to a relatively small number of researchers and laboratories. The uproar over stem cells really began in 1998 with the s- cessful derivation of pluripotent human embryonic stem (ES) cells by James Thomson and co-workers. This breakthrough and the subsequent generation of specialized human cells in vitro led to a paradigm shift within the sci- ti?c community, which transformed this specialized endeavour from a topic of scienti?c interest to a line of investigation with the potential to generate cells - pable of treating serious ailments, including diabetes, cardiovascular diseases and neurodegenerative disorders. Thus the dawn of regenerative medicine has spawned from the somewhat esoteric study of stem cells. Since 1998, extensive research endeavours have been devoted to the study of both embryonic and adult stem cells. Early reports suggested that adult stem cells had a higher plasticity than previously believed, perhaps even comparable with that demonstrated by embryonic stem cells, but several observations of the so-called transdifferentiation capacity and plasticity of adult stem cells have not been repeated. These reports, however, encouraged on-going debates about the capacity of adult versus embryonic stem cells and their potential use in regenerative medicine.
Stem cells --- Medicine. --- Human genetics. --- Neurosciences. --- Pharmacology. --- Biomedicine. --- Pharmacology/Toxicology. --- Human Genetics. --- Colony-forming units (Cells) --- Mother cells --- Progenitor cells --- Cells
Choose an application
Signi?cant advances in stem cell research and their potentials for therap- tic applications have attracted the attention of the scienti?c community and captured the imagination of society as a whole. Not so long ago, the study of most stem cells, other than those that regenerated the haematopoietic system, was rather obscure and limited to a relatively small number of researchers and laboratories. The uproar over stem cells really began in 1998 with the s- cessful derivation of pluripotent human embryonic stem (ES) cells by James Thomson and co-workers. This breakthrough and the subsequent generation of specialized human cells in vitro led to a paradigm shift within the sci- ti?c community, which transformed this specialized endeavour from a topic of scienti?c interest to a line of investigation with the potential to generate cells - pable of treating serious ailments, including diabetes, cardiovascular diseases and neurodegenerative disorders. Thus the dawn of regenerative medicine has spawned from the somewhat esoteric study of stem cells. Since 1998, extensive research endeavours have been devoted to the study of both embryonic and adult stem cells. Early reports suggested that adult stem cells had a higher plasticity than previously believed, perhaps even comparable with that demonstrated by embryonic stem cells, but several observations of the so-called transdifferentiation capacity and plasticity of adult stem cells have not been repeated. These reports, however, encouraged on-going debates about the capacity of adult versus embryonic stem cells and their potential use in regenerative medicine.
Pharmacology. Therapy --- Human genetics --- Neuropathology --- neurologie --- medische genetica --- farmacologie --- stamcellen --- toxicologie --- stamceltransplantatie
Choose an application
Signi?cant advances in stem cell research and their potentials for therap- tic applications have attracted the attention of the scienti?c community and captured the imagination of society as a whole. Not so long ago, the study of most stem cells, other than those that regenerated the haematopoietic system, was rather obscure and limited to a relatively small number of researchers and laboratories. The uproar over stem cells really began in 1998 with the s- cessful derivation of pluripotent human embryonic stem (ES) cells by James Thomson and co-workers. This breakthrough and the subsequent generation of specialized human cells in vitro led to a paradigm shift within the sci- ti?c community, which transformed this specialized endeavour from a topic of scienti?c interest to a line of investigation with the potential to generate cells - pable of treating serious ailments, including diabetes, cardiovascular diseases and neurodegenerative disorders. Thus the dawn of regenerative medicine has spawned from the somewhat esoteric study of stem cells. Since 1998, extensive research endeavours have been devoted to the study of both embryonic and adult stem cells. Early reports suggested that adult stem cells had a higher plasticity than previously believed, perhaps even comparable with that demonstrated by embryonic stem cells, but several observations of the so-called transdifferentiation capacity and plasticity of adult stem cells have not been repeated. These reports, however, encouraged on-going debates about the capacity of adult versus embryonic stem cells and their potential use in regenerative medicine.
Pharmacology. Therapy --- Human genetics --- Neuropathology --- neurologie --- medische genetica --- farmacologie --- stamcellen --- genetica --- toxicologie --- stamceltransplantatie
Choose an application
Listing 1 - 8 of 8 |
Sort by
|