Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Choose an application
Master thesis linked to an internship by CE+T company, concerning the study and improvement of existing technology/circuits in their power converters. The goal is to improve the existing circuits either by reducing the size or the cost, or by increasing the efficiency. The actual circuit corresponds to a single phase converter including three half-bridges.
Choose an application
CE+T Power is a Belgian company and a leading producer of modular inverters and modular UPS. Founded in 1934, CE+T Power has been specializing in power electronics since the 1960's and they invented the modular inverter in the end of the 1980’s. They provide power solutions to enterprises to secure their critical applications against power failures. Therefore, CE+T is always progressing in the field of power electronics by offering the best modular inverters. A DC/DC converter is a building block of an inverter. So, a high-performance DC/DC converter is necessary for their products. The main objective of this work is two-fold. The first objective is to study a DC/DC converter topology known as Multi Resonant Interleaved Boost Converter and to evaluate its performance and behaviour. The second objective is to utilize the knowledge gained and implement it to optimize a prototype of DC/DC converter called as `CE+T E-Once 350VA DC/DC Converter'. First the `CE+T E-Once 350VA DC/DC Converter' is tested and its various characteristics such as ripple current, ZCS behaviour of active switches, voltage gain and stability are evaluated. Then the potential improvements are identified. To achieve the improvements, a list of required hardware and software changes is established. The modifications are introduced in the circuit, one at a time and various tests are carried out to validate the modifications introduced. Once, all the necessary changes are done, the new version of the converter is called `Optimized Multi Resonant Interleaved Boost Converter'. In comparison to the `CE+T E-Once 350VA DC/DC Converter', the `Optimized Multi Resonant Interleaved Boost Converter' has lower input ripple current, lower voltage stress across the MOSFET switches, lower current peaks in the MOSFET's drain current and lower energy circulating in the resonant tank; all of which led to reduced losses and better efficiency. This project consisted of theoretical research as well as hands-on experience with DC/DC converters. Various concepts such as zero-current switching and resonant converters were studied and implemented in practical.
Choose an application
Power converters are widely used over the world and are implemented in several electronic applications. This thesis was realised in partnership with CE+T POWER, one of the leaders on the power management market. The principal goal of this project was to revise their current DC/DC converter implemented inside one of their main products, the ``Sierra 10". To do so, the idea of replacing MOSFET by new GaN transistors was investigated. First, the converter operations were studied and successfully checked on LTspice simulations. The wide bandgap semiconductors technology was summarised and it was shown that there were several advantages of using GaN instead of silicon transistors. GaN transistors are easy to use, allow new capabilities, are reliable, and will be at least as cost-effective as the silicon within few years. Then, it was shown that the transistors of the converter were controllable by sensing the magnetising current. In practice, the drain current of the primary transistor is almost an image of the magnetising current (without considering the resonance part of the drain current). The drain current would be sensed. It was possible to fix the needed output power to compute the corresponding peak magnetising current values and switching frequency to impose. At first glance, there were several operating points for a given output power. However, it was shown, under assumptions, that an operating point which induces the lowest power losses inside the primary transistor existed. This could be translated into a simple optimisation problem. The mathematical programming results corresponded to the analytical results. The model suggested to decrease the switching frequency around 30 kHz for a peak magnetising current of 81 A. This operating point might not be the most practical one in terms of transformer sizing and cost. Supplementary manufacturing constraints could be added to the model to shift the minimum losses operating point. The obtained results showed that a possible minimum losses operating point exists and could be tracked under a simple model of losses computation that could be sharpened in function of the technical constraints.
Listing 1 - 4 of 4 |
Sort by
|