Narrow your search

Library

UGent (3)

KU Leuven (2)

ULB (2)

UCLouvain (1)

UMons (1)


Resource type

book (6)


Language

English (6)


Year
From To Submit

2000 (3)

1998 (1)

1997 (1)

1989 (1)

Listing 1 - 6 of 6
Sort by

Book
Quantitative coherent imaging : theory, methods and some applications
Author:
ISBN: 0121033007 0323153593 9780121033002 Year: 1989 Volume: 11 Publisher: London : Academic press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Imaging systems.


Book
Image processing : mathematical methods and applications
Author:
Year: 1997 Publisher: Oxford : Clarendon press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Numerical methods for partial differential equations
Authors: --- ---
ISBN: 354076125X 1447103777 Year: 2000 Publisher: Berlin Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob­ lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier­ Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

Analytic methods for partial differential equations
Authors: --- ---
ISBN: 3540761241 1447103793 Year: 2000 Publisher: Berlin Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab­ lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

Fractal geometry in digital imaging
Authors: --- ---
ISBN: 0127039708 Year: 1998 Publisher: San Diego (Calif.) : Academic press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Numerical methods for partial differential equations
Authors: --- ---
ISBN: 9783540761259 Year: 2000 Publisher: Berlin Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Listing 1 - 6 of 6
Sort by