Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The Monte Carlo method is a numerical technique to model the probability of all possible outcomes in a process that cannot easily be predicted due to the interference of random variables. It is a technique used to understand the impact of risk, uncertainty, and ambiguity in forecasting models. However, this technique is complicated by the amount of computer time required to achieve sufficient precision in the simulations and evaluate their accuracy. This book discusses the general principles of the Monte Carlo method with an emphasis on techniques to decrease simulation time and increase accuracy.
Choose an application
The Monte Carlo method is a numerical technique to model the probability of all possible outcomes in a process that cannot easily be predicted due to the interference of random variables. It is a technique used to understand the impact of risk, uncertainty, and ambiguity in forecasting models. However, this technique is complicated by the amount of computer time required to achieve sufficient precision in the simulations and evaluate their accuracy. This book discusses the general principles of the Monte Carlo method with an emphasis on techniques to decrease simulation time and increase accuracy.
Choose an application
The Monte Carlo method is a numerical technique to model the probability of all possible outcomes in a process that cannot easily be predicted due to the interference of random variables. It is a technique used to understand the impact of risk, uncertainty, and ambiguity in forecasting models. However, this technique is complicated by the amount of computer time required to achieve sufficient precision in the simulations and evaluate their accuracy. This book discusses the general principles of the Monte Carlo method with an emphasis on techniques to decrease simulation time and increase accuracy.
Listing 1 - 3 of 3 |
Sort by
|