Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This book presents technoeconomic challenges, recent trends, and developments toward sustainable algal biofuels and biorefinery. The exponential increase in population and thus the demand for energy, the ever-rising threats to climate change with conventional fossil fuels consumption, fluctuations in fossil fuels price and geopolitical instability have made each and every country of the world to think over its energy independence and security by increasing its own domestic energy production and reducing dependence on scarce fossil fuels. The global need to shift towards a sustainable source of energy has led to the discovery of third and fourth generation biofuels, in which microalgae and their genetically modified strains have been exploited. However, these simple photosynthetic organisms are difficult to select and cultivate for the production of biodiesel. Genetic engineering has opened provisions for the introduction of desired traits to such useful strains. There are also scopes for designing of novel photobioreactors (PBRs) having strain-specific physicochemical parameters, adequate CO2 and nutrient supply, and so on. The role of microalgae in CO2 sequestration from the environment is well known fact. Wastewater treatment plants can be used a raceway pond for the microalgal biomass production, and thus, obtained biomass can be used for biofuels and biochemical production. Mathematical modelling can be used to understand the complex phenomena inside the photobioreactor, which can be a great help to overcome the limitations related to design and scale up of PBRs. Flow hydrodynamics in PBRs has significant effect on the microalgae growth. Computational fluid dynamics (CFD) can be used to study operating and geometry factors in PBRs that influence the flow dynamics, such as the inlet gas flow rate, mixing, mass transfer, reactor geometry. The use of artificial intelligence (AI) particularly artificial neural network model (ANN model), statistical and evolutionary learning-based techniques are some innovative approaches in manipulating and optimizing productivity and costs in algal biofuel production. This book is aimed to bring several aspects of algal biorefinery and microalgal biofuel production, challenges, and future perspective of microalgal biofuel production at a single place.
Algal biofuels. --- Biomass energy. --- Biotechnology. --- Renewable energy sources. --- Green chemistry. --- Biodiversity. --- Renewable Energy. --- Green Chemistry.
Choose an application
Environmental pollution is a worldwide concern now. A major section of the world population is struggling for drinking water. Polluted soil is resulting into low agricultural productivity and thus creating challenges in the way of sustainable livelihood of a large section of human population. Biological treatment can offer both green solutions for wastewater treatment and resource recovery as well. Like algal-based systems can be utilized for wastewater treatment and production of biofuels from the biomass grown on the wastewater. Bio-based nanomaterials have been extensively studied for their employability in the health care, process optimization, water resource management, dealing with environmental pollutants, biosensors, and many others. Bioprospecting of novel biological agents, bio-based products, and bioresource recovery are paving the way for sustainable development as they are providing local solutions for a number of problems. In this proposed book, we start with the introduction to bio-nanotechnological principles and later on discuss bio-based nanomaterials employability for a diverse range of applications from environment to energy to health care. This book provides with current trends in bio-nanotechnology for anthropogonic purposes, prospects, challenges, and way forward.
Water. --- Hydrology. --- Biomaterials. --- Nanotechnology. --- Green chemistry. --- Sustainability. --- Environmental chemistry. --- Green Chemistry. --- Environmental Chemistry.
Choose an application
Hydrosphere --- General biophysics --- Electrical engineering --- Water supply. Water treatment. Water pollution --- Environmental protection. Environmental technology --- hydrologie --- biologische materialen --- milieuchemie --- nanotechniek --- water --- ecologie
Choose an application
Choose an application
Due to complex phytochemical components and associated beneficial properties, numerous medicinal and aromatic plants, in whole or parts, have been used for nutritional purposes or the treatment of various diseases and disorders in humans and animals. Essential oils from medicinal and aromatic plants (MAPs) have been exploited for product formulations of pharmaceuticals, cosmetics, food and beverage, colorants, biopesticides, and several other utility chemicals of industrial importance. There is scientific evidence of many medicinal plant extracts possessing immunomodulatory, immunostimulatory, antidiabetic, anticarcinogenic, antimicrobial, and antioxidant properties, thus demonstrating their traditional use in popular medicine. With the advent of modern technology, the exploitation of natural resources has exponentially increased in order to fulfill the demand of an increased human population with improved quality of life. The traditional agriculture and production-based supply of commodities is inadequate to meet the current demand. Biotechnological approaches are gaining importance to bridge the gaps in demand and supply. In the proposed book, medicinal and aromatic plant-based secondary metabolites have been discussed in terms of their therapeutic potential and industrial relevance. To discuss the qualitative and quantitative analysis of a range of medicinal and aromatic plants-based secondary metabolites (SMs), bioprocess development for their extraction and bioseparation, a brief overview of their industrial relevance, various tissue culturing strategies, biotechnological approaches to enhance production, scale-up strategies, management of residual biomass post extraction of target SMs is central to the idea of the proposed book. A section will explore the verticals mentioned above. In the next section, the book addresses the approaches for conserving and improving medicinal and aromatic plant genetic resources. In the third section, approaches to managing the post-harvest crop residue and secondary metabolites extracted plant biomass will be thoroughly discussed. The recent integration of artificial intelligence to improve medicinal and aromatic plant research at several levels, including the development and employment of computational approaches to enhance secondary metabolite production, tissue culture, drug design and discovery, and disease treatment, will be included in the fourth section. The book summarizes current research status, gaps in knowledge, agro-industrial potential, waste or residual plant biomass management, conservation strategies, and computational approaches in the area of medicinal and aromatic plants with an aim to translate biotechnological interventions into reality.
Refuse and refuse disposal. --- Plant genetics. --- Plant biotechnology. --- Waste Management/Waste Technology. --- Plant Genetics. --- Plant Biotechnology.
Choose an application
Due to complex phytochemical components and associated beneficial properties, numerous medicinal and aromatic plants, in whole or parts, have been used for nutritional purposes or the treatment of various diseases and disorders in humans and animals. Essential oils from medicinal and aromatic plants (MAPs) have been exploited for product formulations of pharmaceuticals, cosmetics, food and beverage, colorants, biopesticides, and several other utility chemicals of industrial importance. There is scientific evidence of many medicinal plant extracts possessing immunomodulatory, immunostimulatory, antidiabetic, anticarcinogenic, antimicrobial, and antioxidant properties, thus demonstrating their traditional use in popular medicine. With the advent of modern technology, the exploitation of natural resources has exponentially increased in order to fulfill the demand of an increased human population with improved quality of life. The traditional agriculture and production-based supply of commodities is inadequate to meet the current demand. Biotechnological approaches are gaining importance to bridge the gaps in demand and supply. In the proposed book, medicinal and aromatic plant-based secondary metabolites have been discussed in terms of their therapeutic potential and industrial relevance. To discuss the qualitative and quantitative analysis of a range of medicinal and aromatic plants-based secondary metabolites (SMs), bioprocess development for their extraction and bioseparation, a brief overview of their industrial relevance, various tissue culturing strategies, biotechnological approaches to enhance production, scale-up strategies, management of residual biomass post extraction of target SMs is central to the idea of the proposed book. A section will explore the verticals mentioned above. In the next section, the book addresses the approaches for conserving and improving medicinal and aromatic plant genetic resources. In the third section, approaches to managing the post-harvest crop residue and secondary metabolites extracted plant biomass will be thoroughly discussed. The recent integration of artificial intelligence to improve medicinal and aromatic plant research at several levels, including the development and employment of computational approaches to enhance secondary metabolite production, tissue culture, drug design and discovery, and disease treatment, will be included in the fourth section. The book summarizes current research status, gaps in knowledge, agro-industrial potential, waste or residual plant biomass management, conservation strategies, and computational approaches in the area of medicinal and aromatic plants with an aim to translate biotechnological interventions into reality.
Refuse and refuse disposal. --- Plant genetics. --- Plant biotechnology. --- Waste Management/Waste Technology. --- Plant Genetics. --- Plant Biotechnology.
Choose an application
Due to complex phytochemical components and associated beneficial properties, numerous medicinal and aromatic plants, in whole or parts, have been used for nutritional purposes or the treatment of various diseases and disorders in humans and animals. Essential oils from medicinal and aromatic plants (MAPs) have been exploited for product formulations of pharmaceuticals, cosmetics, food and beverage, colorants, biopesticides, and several other utility chemicals of industrial importance. There is scientific evidence of many medicinal plant extracts possessing immunomodulatory, immunostimulatory, antidiabetic, anticarcinogenic, antimicrobial, and antioxidant properties, thus demonstrating their traditional use in popular medicine. With the advent of modern technology, the exploitation of natural resources has exponentially increased in order to fulfill the demand of an increased human population with improved quality of life. The traditional agriculture and production-based supply of commodities is inadequate to meet the current demand. Biotechnological approaches are gaining importance to bridge the gaps in demand and supply. In the proposed book, medicinal and aromatic plant-based secondary metabolites have been discussed in terms of their therapeutic potential and industrial relevance. To discuss the qualitative and quantitative analysis of a range of medicinal and aromatic plants-based secondary metabolites (SMs), bioprocess development for their extraction and bioseparation, a brief overview of their industrial relevance, various tissue culturing strategies, biotechnological approaches to enhance production, scale-up strategies, management of residual biomass post extraction of target SMs is central to the idea of the proposed book. A section will explore the verticals mentioned above. In the next section, the book addresses the approaches for conserving and improving medicinal and aromatic plant genetic resources. In the third section, approaches to managing the post-harvest crop residue and secondary metabolites extracted plant biomass will be thoroughly discussed. The recent integration of artificial intelligence to improve medicinal and aromatic plant research at several levels, including the development and employment of computational approaches to enhance secondary metabolite production, tissue culture, drug design and discovery, and disease treatment, will be included in the fourth section. The book summarizes current research status, gaps in knowledge, agro-industrial potential, waste or residual plant biomass management, conservation strategies, and computational approaches in the area of medicinal and aromatic plants with an aim to translate biotechnological interventions into reality.
Plant genetics. Plant evolution --- Environmental protection. Environmental technology --- Biotechnology --- systematische plantkunde --- biotechnologie --- planten --- afval --- Refuse and refuse disposal. --- Plant genetics. --- Plant biotechnology. --- Waste Management/Waste Technology. --- Plant Genetics. --- Plant Biotechnology.
Choose an application
This book presents technoeconomic challenges, recent trends, and developments toward sustainable algal biofuels and biorefinery. The exponential increase in population and thus the demand for energy, the ever-rising threats to climate change with conventional fossil fuels consumption, fluctuations in fossil fuels price and geopolitical instability have made each and every country of the world to think over its energy independence and security by increasing its own domestic energy production and reducing dependence on scarce fossil fuels. The global need to shift towards a sustainable source of energy has led to the discovery of third and fourth generation biofuels, in which microalgae and their genetically modified strains have been exploited. However, these simple photosynthetic organisms are difficult to select and cultivate for the production of biodiesel. Genetic engineering has opened provisions for the introduction of desired traits to such useful strains. There are also scopes for designing of novel photobioreactors (PBRs) having strain-specific physicochemical parameters, adequate CO2 and nutrient supply, and so on. The role of microalgae in CO2 sequestration from the environment is well known fact. Wastewater treatment plants can be used a raceway pond for the microalgal biomass production, and thus, obtained biomass can be used for biofuels and biochemical production. Mathematical modelling can be used to understand the complex phenomena inside the photobioreactor, which can be a great help to overcome the limitations related to design and scale up of PBRs. Flow hydrodynamics in PBRs has significant effect on the microalgae growth. Computational fluid dynamics (CFD) can be used to study operating and geometry factors in PBRs that influence the flow dynamics, such as the inlet gas flow rate, mixing, mass transfer, reactor geometry. The use of artificial intelligence (AI) particularly artificial neural network model (ANN model), statistical and evolutionary learning-based techniques are some innovative approaches in manipulating and optimizing productivity and costs in algal biofuel production. This book is aimed to bring several aspects of algal biorefinery and microalgal biofuel production, challenges, and future perspective of microalgal biofuel production at a single place.
General ecology and biosociology --- Relation between energy and economics --- Environmental protection. Environmental technology --- Biotechnology --- biodiversiteit --- hernieuwbare energie --- biotechnologie --- ecologie --- Biotechnology. --- Renewable energy sources. --- Green chemistry. --- Biodiversity. --- Renewable Energy. --- Green Chemistry.
Listing 1 - 8 of 8 |
Sort by
|