Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy markets while addressing various aspects from day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.
Energy systems. --- Renewable energy resources. --- Electrical engineering. --- Energy storage. --- Energy Systems. --- Renewable and Green Energy. --- Electrical Engineering. --- Energy Storage. --- Storage of energy --- Force and energy --- Power (Mechanics) --- Flywheels --- Pulsed power systems --- Electric engineering --- Engineering --- Electric power production. --- Electric power generation --- Electricity generation --- Power production, Electric --- Electric power systems --- Electrification
Choose an application
Choose an application
Choose an application
Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems.
Technology: general issues --- microgrid --- distribution network operator --- double externalities --- subsidy --- PV system --- PI controller --- fuzzy control --- MPPT --- tracking speed --- error --- Micro Grid --- VSG --- power sharing --- inertia support --- energy support --- small signal stability --- day-ahead operational scheduling --- reconfigurable microgrid --- DRNN Bi-LSTM --- aggregated load forecasting --- bulk photovoltaic power generation forecasting --- solar potential assessment --- resource mapping --- geographic information systems (GIS) --- site selection --- Iran --- earthquake --- power distribution network --- resilience improvement planning --- water distribution network --- load disaggregation --- non-intrusive load monitoring (NILM) --- dimensionality reduction --- principal component analysis (PCA) --- smart home --- solar renewable --- thermal load --- stochastic operation --- energy storage --- sustainability --- desalination --- renewable energy --- water–energy-nexus --- photovoltaic grid-connected system --- power fluctuation --- DC bus voltage stabilization --- prescribed performance --- command-filtered adaptive backstepping control --- centralized control architecture --- DC microgrid --- distributed control architecture --- electricity price constraint --- hybrid control architecture --- power flow control strategy --- data pre-processing --- electricity theft --- imbalance data --- parameter tuning --- smart grid
Choose an application
Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems.
microgrid --- distribution network operator --- double externalities --- subsidy --- PV system --- PI controller --- fuzzy control --- MPPT --- tracking speed --- error --- Micro Grid --- VSG --- power sharing --- inertia support --- energy support --- small signal stability --- day-ahead operational scheduling --- reconfigurable microgrid --- DRNN Bi-LSTM --- aggregated load forecasting --- bulk photovoltaic power generation forecasting --- solar potential assessment --- resource mapping --- geographic information systems (GIS) --- site selection --- Iran --- earthquake --- power distribution network --- resilience improvement planning --- water distribution network --- load disaggregation --- non-intrusive load monitoring (NILM) --- dimensionality reduction --- principal component analysis (PCA) --- smart home --- solar renewable --- thermal load --- stochastic operation --- energy storage --- sustainability --- desalination --- renewable energy --- water–energy-nexus --- photovoltaic grid-connected system --- power fluctuation --- DC bus voltage stabilization --- prescribed performance --- command-filtered adaptive backstepping control --- centralized control architecture --- DC microgrid --- distributed control architecture --- electricity price constraint --- hybrid control architecture --- power flow control strategy --- data pre-processing --- electricity theft --- imbalance data --- parameter tuning --- smart grid
Choose an application
Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems.
Technology: general issues --- microgrid --- distribution network operator --- double externalities --- subsidy --- PV system --- PI controller --- fuzzy control --- MPPT --- tracking speed --- error --- Micro Grid --- VSG --- power sharing --- inertia support --- energy support --- small signal stability --- day-ahead operational scheduling --- reconfigurable microgrid --- DRNN Bi-LSTM --- aggregated load forecasting --- bulk photovoltaic power generation forecasting --- solar potential assessment --- resource mapping --- geographic information systems (GIS) --- site selection --- Iran --- earthquake --- power distribution network --- resilience improvement planning --- water distribution network --- load disaggregation --- non-intrusive load monitoring (NILM) --- dimensionality reduction --- principal component analysis (PCA) --- smart home --- solar renewable --- thermal load --- stochastic operation --- energy storage --- sustainability --- desalination --- renewable energy --- water–energy-nexus --- photovoltaic grid-connected system --- power fluctuation --- DC bus voltage stabilization --- prescribed performance --- command-filtered adaptive backstepping control --- centralized control architecture --- DC microgrid --- distributed control architecture --- electricity price constraint --- hybrid control architecture --- power flow control strategy --- data pre-processing --- electricity theft --- imbalance data --- parameter tuning --- smart grid --- microgrid --- distribution network operator --- double externalities --- subsidy --- PV system --- PI controller --- fuzzy control --- MPPT --- tracking speed --- error --- Micro Grid --- VSG --- power sharing --- inertia support --- energy support --- small signal stability --- day-ahead operational scheduling --- reconfigurable microgrid --- DRNN Bi-LSTM --- aggregated load forecasting --- bulk photovoltaic power generation forecasting --- solar potential assessment --- resource mapping --- geographic information systems (GIS) --- site selection --- Iran --- earthquake --- power distribution network --- resilience improvement planning --- water distribution network --- load disaggregation --- non-intrusive load monitoring (NILM) --- dimensionality reduction --- principal component analysis (PCA) --- smart home --- solar renewable --- thermal load --- stochastic operation --- energy storage --- sustainability --- desalination --- renewable energy --- water–energy-nexus --- photovoltaic grid-connected system --- power fluctuation --- DC bus voltage stabilization --- prescribed performance --- command-filtered adaptive backstepping control --- centralized control architecture --- DC microgrid --- distributed control architecture --- electricity price constraint --- hybrid control architecture --- power flow control strategy --- data pre-processing --- electricity theft --- imbalance data --- parameter tuning --- smart grid
Choose an application
Annotation In the face of climate change and resource scarcity, energy supply systems are on the verge of a major transformation, which mainly includes the introduction of new components and their integration into the existing infrastructures, new network configurations and reliable topologies, optimal design and novel operation schemes, and new incentives and business models. This revolution is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier energy hubs. It is highly increasing the interactions between today's energy systems at various scales and future intelligent energy systems, which are able to incorporate an increasing amount renewable energy sources. This transformation is also accommodating active participation of end-users as responsive prosumers at different scales which in turn helps to reduce energy costs and to mitigate carbon footprints. This book covers the mentioned promising and dynamic areas of research and development, and reports on contributions in design, control and optimization of integrated energy systems. The contents of the book which are gathered based on the accepted articles in the special issue on Advances in Integrated Energy systems Design, Control and Optimization also covers a variety of topics, ranging from operation and control of small-scale electrical networks to the complex energy systems design and planning.
Choose an application
Annotation In the face of climate change and resource scarcity, energy supply systems are on the verge of a major transformation, which mainly includes the introduction of new components and their integration into the existing infrastructures, new network configurations and reliable topologies, optimal design and novel operation schemes, and new incentives and business models. This revolution is affecting the current paradigm and demanding that energy systems be integrated into multi-carrier energy hubs. It is highly increasing the interactions between today's energy systems at various scales and future intelligent energy systems, which are able to incorporate an increasing amount renewable energy sources. This transformation is also accommodating active participation of end-users as responsive prosumers at different scales which in turn helps to reduce energy costs and to mitigate carbon footprints. This book covers the mentioned promising and dynamic areas of research and development, and reports on contributions in design, control and optimization of integrated energy systems. The contents of the book which are gathered based on the accepted articles in the special issue on Advances in Integrated Energy systems Design, Control and Optimization also covers a variety of topics, ranging from operation and control of small-scale electrical networks to the complex energy systems design and planning.
Choose an application
Energy storage. --- Storage of energy --- Force and energy --- Power (Mechanics) --- Flywheels --- Pulsed power systems
Choose an application
This book provides a comprehensive overview on the latest developments in the control, operation, and protection of microgrids. It provides readers with a solid approach to analyzing and understanding the salient features of modern control and operation management techniques applied to these systems, and presents practical methods with examples and case studies from actual and modeled microgrids. The book also discusses emerging concepts, key drivers and new players in microgrids, and local energy markets while addressing various aspects from day-ahead scheduling to real-time testing of microgrids. The book will be a valuable resource for researchers who are focused on control concepts, AC, DC, and AC/DC microgrids, as well as those working in the related areas of energy engineering, operations research and its applications to energy systems. Presents modern operation, control and protection techniques with applications to real world and emulated microgrids; Discusses emerging concepts, key drivers and new players in microgrids and local energy markets; Addresses various aspects from day-ahead scheduling to real-time testing of microgrids.
Electromagnetism. Ferromagnetism --- Relation between energy and economics --- Electrical engineering --- Applied physical engineering --- energie-economie --- elektrische netwerken --- hernieuwbare energie --- energie (technologie) --- elektriciteit --- elektrotechniek --- elektriciteitsdistributie
Listing 1 - 10 of 15 | << page >> |
Sort by
|