Narrow your search

Library

KU Leuven (22)

ULiège (20)

Odisee (15)

Thomas More Kempen (15)

Thomas More Mechelen (15)

VIVES (15)

UCLL (14)

ULB (13)

LUCA School of Arts (12)

UGent (10)

More...

Resource type

book (29)

periodical (5)


Language

English (34)


Year
From To Submit

2023 (1)

2021 (8)

2020 (8)

2019 (1)

2016 (4)

More...
Listing 21 - 30 of 34 << page
of 4
>>
Sort by

Book
Textbook of structural biology
Authors: --- --- --- --- --- et al.
ISBN: 9789812772077 9789812772084 9812772073 9812772081 Year: 2009 Publisher: Hackensack, NJ : ©2009 World Scientific,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"An important textbook for undergraduate and graduate students in structural biology, chemistry, biochemistry, biology and medicine. Written by a team of leading scientists in the field, it covers all the essential aspects of proteins, nucleic acids and lipids, including the rise and fall of proteins, membranes and gradients, the structural biology of cells, and evolution -- the comparative structural biology. The focus is on interesting and relevant molecular structures as well as central biology"--Back cover.

Keywords

Biomolecules --- Cell Communication. --- Cells --- Protein Folding. --- Protein folding. --- Proteins --- Proteins. --- Ultrastructure (Biology). --- Structure. --- cytology. --- Cytology. --- Ultrastructure (Biology) --- Protein folding --- Structure --- Protéines --- Protein Folding --- Cell Communication --- 577.1 --- Protein Folding, Globular --- Folding, Globular Protein --- Folding, Protein --- Foldings, Globular Protein --- Foldings, Protein --- Globular Protein Folding --- Globular Protein Foldings --- Protein Foldings --- Protein Foldings, Globular --- Proteostasis --- Protein Multimerization --- Intrinsically Disordered Proteins --- 577.1 Chemical bases of life. Biochemistry and bio-organic chemistry generally --- Chemical bases of life. Biochemistry and bio-organic chemistry generally --- Cell Interaction --- Cell-to-Cell Interaction --- Cell Communications --- Cell Interactions --- Cell to Cell Interaction --- Cell-to-Cell Interactions --- Communication, Cell --- Communications, Cell --- Interaction, Cell --- Interaction, Cell-to-Cell --- Interactions, Cell --- Interactions, Cell-to-Cell --- Gene Products, Protein --- Gene Proteins --- Protein --- Protein Gene Products --- Proteins, Gene --- Molecular Mechanisms of Pharmacological Action --- Biological molecules --- Molecules --- Molecular biology --- Folding of proteins --- Fine structure (Biology) --- Nanobiology --- Microstructure --- Nanoscience --- cytology --- Folding --- Conformation --- Proteins - Structure --- Biomolecules - Structure --- Protéines


Book
Frontiers in Protein Structure, Function, and Dynamics
Authors: ---
ISBN: 9811555303 981155529X Year: 2020 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.

Keywords

Proteins . --- Enzymology. --- Medical genetics. --- Bioinformatics. --- Protein Science. --- Protein Structure. --- Gene Function. --- Bio-informatics --- Biological informatics --- Biology --- Information science --- Computational biology --- Systems biology --- Clinical genetics --- Diseases --- Heredity of disease --- Human genetics --- Medical sciences --- Pathology --- Genetic disorders --- Biochemistry --- Enzymes --- Proteids --- Biomolecules --- Polypeptides --- Proteomics --- Data processing --- Genetic aspects --- Protein Conformation. --- Protein Folding. --- Proteins. --- Enzymes. --- Biocatalysts --- Molecular Mechanisms of Pharmacological Action --- Gene Products, Protein --- Gene Proteins --- Protein Gene Products --- Proteins, Gene --- Protein Folding, Globular --- Folding, Globular Protein --- Folding, Protein --- Foldings, Globular Protein --- Foldings, Protein --- Globular Protein Folding --- Globular Protein Foldings --- Protein Foldings --- Protein Foldings, Globular --- Proteostasis --- Protein Multimerization --- Intrinsically Disordered Proteins --- Conformation, Protein --- Conformations, Protein --- Protein Conformations --- Proteins --- Protein Folding --- (Produktform)Electronic book text. --- Proteïnes --- Bioinformàtica --- Informàtica biològica --- Ciències de la informació --- Biologia computacional --- Biomolècules --- Albúmines --- Apoproteïnes --- Conformació de proteïnes --- Enzims --- Factors de transcripció --- Glicoproteïnes --- Lipoproteïnes --- Nucleoproteïnes --- Pèptids --- Prions --- Protamines --- Proteïnes citosquelètiques --- Proteïnes de membrana --- Proteïnes de la sang --- Proteïnes recombinants --- Proteïnes supressores de tumors --- Receptors cel·lulars --- Ubiqüitina --- Xaperones moleculars --- Proteòmica


Book
The Conformational Universe of Proteins and Peptides: Tales of Order and Disorder
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Proteins represent one of the most abundant classes of biological macromolecules and play crucial roles in a vast array of physiological and pathological processes. The knowledge of the 3D structure of a protein, as well as the possible conformational transitions occurring upon interaction with diverse ligands, are essential to fully comprehend its biological function.In addition to globular, well-folded proteins, over the past few years, intrinsically disordered proteins (IDPs) have received a lot of attention. IDPs are usually aggregation-prone and may form toxic amyloid fibers and oligomers associated with several human pathologies. Peptides are smaller in size than proteins but similarly represent key elements of cells. A few peptides are able to work as tumor markers and find applications in the diagnostic and therapeutic fields. The conformational analysis of bioactive peptides is important to design novel potential drugs acting as selective modulators of specific receptors or enzymes. Nevertheless, synthetic peptides reproducing different protein fragments have frequently been implemented as model systems in folding studies relying on structural investigations in water and/or other environments.This book contains contributions (seven original research articles and five reviews published in the journal Molecules) on the above-described topics and, in detail, it includes structural studies on globular folded proteins, IDPs and bioactive peptides. These works were conducted usingdifferent experimental methods.


Book
Intrinsically Disordered Proteins and Chronic Diseases
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students

Keywords

Research & information: general --- IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid–liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order–disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau–microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- n/a --- liquid-liquid phase separation --- order-disorder transition --- tau-microtubule association


Book
The Fuzziness in Molecular, Supramolecular, and Systems Chemistry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book.


Book
Intrinsically Disordered Proteins and Chronic Diseases
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an embodiment of a series of articles that were published as part of a Special Issue of Biomolecules. It is dedicated to exploring the role of intrinsically disordered proteins (IDPs) in various chronic diseases. The main goal of the articles is to describe recent progress in elucidating the mechanisms by which IDPs cause various human diseases, such as cancer, cardiovascular disease, amyloidosis, neurodegenerative diseases, diabetes, and genetic diseases, to name a few. Contributed by leading investigators in the field, this compendium serves as a valuable resource for researchers, clinicians as well as postdoctoral fellows and graduate students

Keywords

IDP --- fuzzy interactions --- protein complementation assays --- split-GFP reassembly --- kinetics --- membraneless organelles --- optical tweezer --- liquid–liquid phase separation --- protein diffusion --- depletion interaction --- entropic force --- low-complexity sequences --- intrinsically disordered proteins --- PAGE4 --- conformational plasticity --- order–disorder transition --- phosphorylation --- intrinsic disordered protein --- extremely fuzzy complex --- protein interaction --- binding mechanism --- tumor protein p53 --- mouse double minute 2 --- mouse double minute 4 --- Kinase-inducible domain interacting domain --- phosphomimetics --- nuclear magnetic resonance --- transient secondary structure --- COR15A --- Late embryogenesis abundant --- Trifluoroethanol --- Nuclear magnetic resonance --- intrinsically disordered regions --- functional segments --- disease-related proteins --- protein-protein interaction --- subcellular location --- glucocorticoid receptor --- intrinsically disordered --- transactivation activity --- gene regulation --- coactivators --- microtubule associated protein --- tau --- intrinsically disordered protein --- dynamic configuration --- free energy landscape --- microtubules --- electrostatics --- diffusion --- protein structure prediction --- molecular modelling --- molecular dynamics --- tau–microtubule association --- conformational ensemble --- replica exchange molecular dynamics --- drug design --- n/a --- liquid-liquid phase separation --- order-disorder transition --- tau-microtubule association


Book
The Amazing World of IDPs in Human Diseases
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

It is now clearly established that some proteins or protein regions are devoid of any stable secondary and/or tertiary structure under physiological conditions, but still possess fundamental biological functions. These intrinsically disordered proteins (IDPs) or regions (IDRs) have peculiar features due to their plasticity such as the capacity to bind their biological targets with high specificity and low affinity, and the possibility of interaction with numerous partners. A correlation between intrinsic disorder and various human diseases such as cancer, diabetes, amyloidoses and neurodegenerative diseases is now evident, highlighting the great importance of the topic. In this volume, we have collected recent high-quality research about IDPs and human diseases. We have selected nine papers which deal with a wide range of topics, from neurodegenerative disease to cancer, from IDR-mediated interactions to bioinformatics tools, all related to IDP peculiar features. Recent advances in the IDPs/IDRs issue are here presented, contributing to the progress of knowledge of the intrinsic disorder field in human disease.


Book
The Fuzziness in Molecular, Supramolecular, and Systems Chemistry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book.


Book
The Conformational Universe of Proteins and Peptides: Tales of Order and Disorder
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Proteins represent one of the most abundant classes of biological macromolecules and play crucial roles in a vast array of physiological and pathological processes. The knowledge of the 3D structure of a protein, as well as the possible conformational transitions occurring upon interaction with diverse ligands, are essential to fully comprehend its biological function.In addition to globular, well-folded proteins, over the past few years, intrinsically disordered proteins (IDPs) have received a lot of attention. IDPs are usually aggregation-prone and may form toxic amyloid fibers and oligomers associated with several human pathologies. Peptides are smaller in size than proteins but similarly represent key elements of cells. A few peptides are able to work as tumor markers and find applications in the diagnostic and therapeutic fields. The conformational analysis of bioactive peptides is important to design novel potential drugs acting as selective modulators of specific receptors or enzymes. Nevertheless, synthetic peptides reproducing different protein fragments have frequently been implemented as model systems in folding studies relying on structural investigations in water and/or other environments.This book contains contributions (seven original research articles and five reviews published in the journal Molecules) on the above-described topics and, in detail, it includes structural studies on globular folded proteins, IDPs and bioactive peptides. These works were conducted usingdifferent experimental methods.


Book
Functionally Relevant Macromolecular Interactions of Disordered Proteins
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Disordered proteins are relatively recent newcomers in protein science. They were first described in detail by Wright and Dyson, in their J. Mol. Biol. paper in 1999. First, it was generally thought for more than a decade that disordered proteins or disordered parts of proteins have different amino acid compositions than folded proteins, and various prediction methods were developed based on this principle. These methods were suitable for distinguishing between the disordered (unstructured) and structured proteins known at that time. In addition, they could predict the site where a folded protein binds to the disordered part of a protein, shaping the latter into a well-defined 3D structure. Recently, however, evidence has emerged for a new type of disordered protein family whose members can undergo coupled folding and binding without the involvement of any folded proteins. Instead, they interact with each other, stabilizing their structure via “mutual synergistic folding” and, surprisingly, they exhibit the same residue composition as the folded protein. Increasingly more examples have been found where disordered proteins interact with non-protein macromolecules, adding to the already large variety of protein–protein interactions. There is also a very new phenomenon when proteins are involved in phase separation, which can represent a weak but functionally important macromolecular interaction. These phenomena are presented and discussed in the chapters of this book.

Keywords

Research & information: general --- Biology, life sciences --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics

Listing 21 - 30 of 34 << page
of 4
>>
Sort by