Narrow your search

Library

KU Leuven (17)

Odisee (17)

Thomas More Kempen (17)

Thomas More Mechelen (17)

ULB (17)

ULiège (17)

VIVES (17)

UCLL (15)

UGent (7)

VUB (4)

More...

Resource type

book (23)

digital (2)


Language

English (23)


Year
From To Submit

2024 (2)

2023 (2)

2022 (9)

2021 (4)

2020 (1)

More...
Listing 11 - 20 of 23 << page
of 3
>>
Sort by

Book
Linear and Nonlinear Optical Responses of Chiral Multifold Semimetals
Author:
ISBN: 9783031257711 Year: 2023 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries — the chiral multifold fermions — that can be understood as a higher-spin generalization of Weyl fermions. This work analyzes how multifold fermions interact with light and highlights the power of optical responses to identify and characterize multifold fermions and the materials hosting them. In particular, we find optical selection rules, compute the linear optical response of all chiral multifold fermions, and analyze the non-linear optical responses and their relation to the presence of topological bands. Finally, the research presented here analyzes the theoretical foundations and experimental features of optical responses of two multifold semimetals, RhSi and CoSi, connecting the observed features with the theoretical predictions and demonstrating the power of optical responses to understand real-life multifold semimetals.


Book
Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films
Author:
ISBN: 3662499258 3662499274 Year: 2016 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the transport studies of topological insulator thin films grown by molecular beam epitaxy. Through band structure engineering, the ideal topological insulators, (Bi1−xSbx)2Te3 ternary alloys, are successfully fabricated, which possess truly insulating bulk and tunable conducting surface states. Further transport measurements on these ternary alloys reveal a disentanglement between the magnetoelectric and thermoelectric properties. In magnetically doped topological insulators, the fascinating quantum anomalous Hall effect was experimentally observed for the first time. Moreover, the topology-driven magnetic quantum phase transition was Systematically controlled by varying the strength of the spin-orbital coupling. Readers will not only benefit from the description of the technique of transport measurements, but will also be inspired by the understanding of topological insulators.


Book
Topological Insulators : Dirac Equation in Condensed Matter
Author:
ISBN: 9811046069 9811046050 Year: 2017 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already become a new hotpot of research in the community. .


Book
Emergent transport properties of magnetic topological insulator heterostructures
Author:
ISBN: 981157183X 9811571821 Year: 2020 Publisher: Springer Singapore

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book reveals unique transport phenomena and functionalities in topological insulators coupled with magnetism and superconductivity. Topological insulators are a recently discovered class of materials that possess a spin-momentum-locked surface state. Their exotic spin texture makes them an exciting platform for investigating emergent phenomena, especially when coupled with magnetism or superconductivity. Focusing on the strong correlation between electricity and magnetism in magnetic topological insulators, the author presents original findings on current-direction-dependent nonreciprocal resistance, current-induced magnetization reversal and chiral edge conduction at the domain wall. In addition, he demonstrates how the coupling between superconductivity and topological surface state lead to substantial nonreciprocal resistance. The author also elucidates the origins of these phenomena and deepens readers’ understanding of the topologically nontrivial electronic state. The book includes several works which are published in top journals and were selected for the President’s Award by the University of Tokyo and for the Ikushi Prize, awarded to distinguished Ph.D. students in Japan.


Book
Topological insulators : Dirac equation in condensed matters
Author:
ISSN: 01711873 ISBN: 3642328571 3642439519 364232858X 1299197655 Year: 2012 Volume: 174 Publisher: Berlin ; New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.


Book
Linear Electrodynamic Response of Topological Semimetals : Experimental Results Versus Theoretical Predicitons
Author:
ISBN: 3031356373 3031356365 Year: 2023 Publisher: Cham : Springer Nature Switzerland : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a model description for the electromagnetic response of topological nodal semimetals and summarizes recent experimental findings in these systems. Specifically, it discusses various types of topological semimetals – Dirac, Weyl, nodal-line, triple-point, and multifold semimetals – and provides description for the characteristic features of the linear electrodynamic response for all these types of materials. Topological semimetals possess peculiar bulk electronic band structure, which leads to unusual electrodynamic response. For example, the low-energy inter-band optical conductivity of nodal semimetals is supposed to demonstrate power-law frequency dependence and the intra- and inter-band contributions to the conductivity are often mixed. Further, the magneto-optical response is also unusual, because of the non-equidistant spacing between the Landau levels. Finally, in semimetals with chiral electronic bands, e.g. in Weyl semimetals, the simultaneous application of parallel magnetic and electric fields leads to the chiral anomaly, i.e. to a misbalance between the electrons with diffident chiralities. This misbalance affects the electrodynamics properties of the material and can be detected optically. All these points are addressed here in detail. The book is written for a wide audience of physicists, working in the field of topological condensed matter physics. It gives a pedagogical introduction enabling graduate students and non-experts to familiarize themselves with the subject.


Book
Advances in Topological Materials
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present collection of articles focuses on different aspects of topological-materials studies. Recent progress in both, theoretical and experimental, studies is covered in this Special Issue. A particular stress is given on different optical investigations, as well as on recent band-structure calculations. Besides, neutron scattering experiments, crystal growth, and a number of theoretical models for different topological systems are discussed.


Book
Advances in Topological Materials
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present collection of articles focuses on different aspects of topological-materials studies. Recent progress in both, theoretical and experimental, studies is covered in this Special Issue. A particular stress is given on different optical investigations, as well as on recent band-structure calculations. Besides, neutron scattering experiments, crystal growth, and a number of theoretical models for different topological systems are discussed.


Book
Computational Quantum Physics and Chemistry of Nanomaterials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field

Keywords

Research & information: general --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas


Book
Advances in Topological Materials
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present collection of articles focuses on different aspects of topological-materials studies. Recent progress in both, theoretical and experimental, studies is covered in this Special Issue. A particular stress is given on different optical investigations, as well as on recent band-structure calculations. Besides, neutron scattering experiments, crystal growth, and a number of theoretical models for different topological systems are discussed.

Keywords

Research & information: general --- Physics --- topological insulators --- optical conductivity --- Dirac materials --- Weyl nodes --- screw rotation symmetry --- line node --- space group 19 --- space group 61 --- cyclotron resonance --- crystal growth --- optical floating zone method --- SmB6 --- Sm1-xCexB6 --- topological insulator --- kondo insulator --- topology --- chirality --- multifold semimetal --- optics --- DFT --- topological semimetal --- cobalt monosilicide --- mechanical deformation --- quantum anomalous Hall effect --- Faraday rotation --- terahertz spectroscopy --- inelastic neutron scattering --- topological materials --- anomalous Hall effect --- isotropic ferromagnet --- kagome --- frustrated magnetism --- skyrmion --- magnetization --- optical-conductivity scaling --- topological semimetals --- band structures --- high Chern numbers --- bulk-edge correspondence --- Weyl semimetals --- band-structure calculations --- optical response --- topological insulators --- optical conductivity --- Dirac materials --- Weyl nodes --- screw rotation symmetry --- line node --- space group 19 --- space group 61 --- cyclotron resonance --- crystal growth --- optical floating zone method --- SmB6 --- Sm1-xCexB6 --- topological insulator --- kondo insulator --- topology --- chirality --- multifold semimetal --- optics --- DFT --- topological semimetal --- cobalt monosilicide --- mechanical deformation --- quantum anomalous Hall effect --- Faraday rotation --- terahertz spectroscopy --- inelastic neutron scattering --- topological materials --- anomalous Hall effect --- isotropic ferromagnet --- kagome --- frustrated magnetism --- skyrmion --- magnetization --- optical-conductivity scaling --- topological semimetals --- band structures --- high Chern numbers --- bulk-edge correspondence --- Weyl semimetals --- band-structure calculations --- optical response

Listing 11 - 20 of 23 << page
of 3
>>
Sort by