Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Providing a novel approach to sparsity, this comprehensive book presents the theory of stochastic processes that are ruled by linear stochastic differential equations, and that admit a parsimonious representation in a matched wavelet-like basis. Two key themes are the statistical property of infinite divisibility, which leads to two distinct types of behaviour - Gaussian and sparse - and the structural link between linear stochastic processes and spline functions, which is exploited to simplify the mathematical analysis. The core of the book is devoted to investigating sparse processes, including a complete description of their transform-domain statistics. The final part develops practical signal-processing algorithms that are based on these models, with special emphasis on biomedical image reconstruction. This is an ideal reference for graduate students and researchers with an interest in signal/image processing, compressed sensing, approximation theory, machine learning, or statistics.
Stochastic differential equations. --- Random fields. --- Gaussian processes.
Choose an application
Choose an application
Choose an application
This advanced undergraduate and graduate text has now been revised and updated to cover the basic principles and applications of various types of stochastic systems, with much on theory and applications not previously available in book form. The text is also useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists.Has been revised and updated to cover the basic principles and applications of various types of stochastic systemsUseful as
Choose an application
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
Stochastic partial differential equations can be used in many areas of science to model complex systems that evolve over time. Their analysis is currently an area of much research interest. This book consists of papers given at the ICMS Edinburgh meeting held in 1994 on this topic, and it brings together some of the world's best known authorities on stochastic partial differential equations. Subjects covered include the stochastic Navier-Stokes equation, critical branching systems, population models, statistical dynamics, and ergodic properties of Markov semigroups. For all workers on stochastic partial differential equations this book will have much to offer.
Stochastic partial differential equations --- Differential equations, Partial --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces