Choose an application
Choose an application
Die Quantenphysik bildet schon heute das Fundament zahlreicher aktueller Technologien. Zukünftige Quantentechnologien, wie Quantencomputer, werden sowohl in der Industrie als auch für die Gesellschaft an Bedeutung gewinnen. In vielen nationalen und internationalen Schulcurricula ist die Quantenphysik als Thema für den Physikunterricht mittlerweile fest verankert. Aber trotz des enormen Bedeutungszuwachses von Quantentechnologien ist der Unterricht zur Quantenphysik an Schulen nach wie vor von semi-klassischen Modellen und quasi-historischen Zugängen geprägt, während moderne Begriffe der Quantenphysik häufig unberücksichtigt bleiben. Die Folge sind oft klassisch-mechanistisch geprägte Vorstellungen Lernender zur Quantenphysik. Hier setzt diese Arbeit an: mit dem Erlanger Unterrichtskonzept zur Quantenoptik wird ein Konzept vorgestellt, mit dem Lernende der gymnasialen Oberstufe Quanteneffekte anhand quantenoptischer Experimente kennen lernen. Konzepte der Quantenoptik, wie die Präparation von Quantenzuständen, die Antikorrelation am Strahlteiler und die Einzelphotoneninterferenz verhelfen Lernenden zu einem modernen Bild über Quantenphysik. Im Rahmen einer summativen Evaluation im Mixed-Methods-Design mit 171 Schülerinnen und Schülern zeigte sich, dass Lernende mit dem Erlanger Unterrichtskonzept zu quantenphysikalisch dominierten Vorstellungen gelangen und verbreitete Lernschwierigkeiten vermieden werden kÃnnen.
Choose an application
"Quantum optics remains one of the liveliest fields in physics. While it has been a dominant research field for at least four decades, with much graduate activity, it has now impacted the undergraduate curriculum. This book developed from courses we have taught to final-year undergraduates and beginning graduate students at Imperial College London and City University of New York"--
Choose an application
"In the last decade many important advances have taken place in the field of quantum optics, with numerous potential applications. Ideal for graduate courses on quantum optics, this textbook provides an up-to-date account of the basic principles of the subject. Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement, quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics. The textbook features end-of-chapter exercises with solutions available for instructors at www.cambridge.org/9781107006409. It is invaluable to both graduate students and researchers in physics and photonics, quantum information science and quantum communications"--
Choose an application
Optics. Quantum optics --- Quantum optics. --- Optique quantique --- Quantum optics
Choose an application
Optics. Quantum optics --- Quantum optics --- Quantum optics. --- Optique quantique
Choose an application
Optics. Quantum optics --- Quantum optics --- Optique quantique
Choose an application
Quantum optics. --- Nanoscience. --- Quantum optics --- Nanoscience
Choose an application
This book scrutinises, physically, the devices and components used in quantum optic experiments, revealing various, hitherto ignored, phenomena, including quantum Rayleigh spontaneous and stimulated emissions, the unavoidable parametric amplification of spontaneous emission, and the formation of groups of monochromatic photons in a high finesse cavity incorporating a quantum dot. The book also explores self-contained quantisation of the optical field without any harmonic oscillators leading to the dynamic and coherent number states, the intrinsic optical field of photons and their localised spatial distributions, and instantaneous and localised photon-dipole interactions by means of pure, dynamic and coherent number states. In addition, it looks at the quantum evolution and predictions being described by the Ehrenfest theorem, for any level of optical field excitation, in order to evaluate the expectation value of an operator in the context of a given set of pure wavefunctions, and identifies quantum phenomena at the level of single events and measurements with a space- and time-dependence, leading to quantum locality and realism. Overall, the book shows that there are no quantum optic "miracles" once the physically present effects are correctly identified.
Quantum optics. --- Quantum optics --- Applied optics. --- Mathematics.
Choose an application