Choose an application
Plant viruses --- Phytopathogenic microorganisms --- Congresses --- Plant Viruses. --- Viroids. --- -Plant viruses --- -Phytopathogenic viruses --- Plant virology --- Viruses --- Virus diseases of plants --- Micro-organisms, Phytopathogenic --- Microbial plant pathogens --- Plant pathogens --- Microorganisms --- Plant parasites --- Agricultural microbiology --- Microbial herbicides --- Plant diseases --- Viroid --- Phytophagineae --- Plant Virus --- Virus, Plant --- Viruses, Plant --- -Congresses --- Plant Viruses --- Viroids --- Phytopathogenic viruses --- Plant viruses - Congresses --- Phytopathogenic microorganisms - Congresses
Choose an application
632.38 --- 578.8 --- 578.85/.86 --- Viruses primarily of plant hosts --- Plant viruses. --- Virus diseases of plants. --- 578.85/.86 Viruses primarily of plant hosts --- Plant viruses --- Virus diseases of plants --- Plant virus diseases --- Plants --- Plant diseases --- Phytopathogenic viruses --- Plant virology --- Phytopathogenic microorganisms --- Viruses --- Virus diseases
Choose an application
Plant viruses --- Virus diseases of plants --- 632.3 --- 632.3 Bacterial and virus diseases of plants --- Bacterial and virus diseases of plants --- Plant virus diseases --- Plants --- Plant diseases --- Phytopathogenic viruses --- Plant virology --- Phytopathogenic microorganisms --- Viruses --- Virus diseases --- General virology --- Phytopathology. Phytoparasitology
Choose an application
Plants, Ornamental --- Virus diseases of plants --- Plant viruses --- Virus diseases of plants. --- Diseases and pests --- Genetics --- Genetics. --- Diseases and pests. --- Plant virus diseases --- Plants --- Plant diseases --- Viral genetics --- Phytopathogenic viruses --- Plant virology --- Phytopathogenic microorganisms --- Viruses --- Decorative plants --- Garden plants --- Ornamental plants --- Ornamentals (Plants) --- Horticultural crops --- Plants, Cultivated --- Ornamental plant industry --- Virus diseases
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
Research & information: general --- sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub-Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production --- sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub-Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production
Choose an application
Pome fruit viruses have been mainly identified from commercialised cultivars presenting disease symptoms. Their significant impact on fruit yield and quality triggered their identification and characterization ex post. For example, the infection of certain virulent strains of apple stem pitting virus (ASPV) was detected due to necrosis development between susceptible scions and/or rootstocks (rootstock incompatibility). In this context, the diversity of viruses infecting pome fruit trees is still largely underestimated and it is worth additional investigation. The goal of this project is to evaluate the presence of known and unknown viruses infecting ancient cultivars of apple and pear. Leaf samples were taken from six apple cultivars (‘Gravenstein’, ‘Pomme Pellone’, ‘Délices de Beignée’, ‘Reinette Meurens’, ‘Belle de Boskoop’, and ‘Joseph Musch’) and five pear cultivars (‘Poire Cuisse Madame’, ‘Jeanne d’Arc’, ‘Poire Rougette’, ‘Bronzée d’Enghien’, and ‘Colmar du Mortier’). Total RNA was analysed from ‘Joseph Musch’ (tree Q9) after high throughput sequencing. Double-stranded RNA (dsRNA) and virion-associated nucleic acids (VANA) preparation protocols were applied on the other samples individually (dsRNA) or pooled (dsRNA and VANA). After sequencing, the obtained data were analysed with Geneious Prime to identify the viruses present in the sampled trees and to reconstruct their genomes. In addition, two other bioinformatics pipelines were tested on the generated data (Kaiju and Kraken). The nearly complete genome sequence of seven new isolates from several known viruses was reconstructed. All the samples were infected by at least one virus, the most prevalent was ASPV. Interestingly, the detection of Apple rubbery wood virus-1 (ARWV-1), Apple luteovirus-1 (ALV-1) and Apple hammerhead viroid-like RNA (AHVd-like RNA) corresponded to the first detection in Europe. Primer and RT-PCR protocols were designed. The presence of ARWV-1 was detected by RT-PCR, confirming the first detection of this virus in Europe. Further studies need to be carried out to assess the distribution of ARWV-1 within the germplasm collection and to confirm the detection of ALV-1 and AHVd. The analysis of the local prevalence of these viruses will be a first step to evaluate the biological risk they can pose for European production.
pome fruit, apple (Malus Mill.), pear (Pyrus L.), plant virus, high-throughput sequencing (HTS), virome characterization, germplasm resources, Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple luteovirus-1 (ALV-1), Apple rubbery wood virus-1 (ARWV-1), Apple hammerhead viroid-like RNA (AHVd-like RNA) --- Sciences du vivant > Agriculture & agronomie
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
Research & information: general --- sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub–Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production --- n/a --- sub-Saharan Africa
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub–Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production --- n/a --- sub-Saharan Africa
Choose an application
In this volume, the authors provide an excellent overview of how far the plant viral vector field has come. This discipline is no longer exclusively the domain of academics − there is a small, but growing number of small biotechnology companies that exploit plant viruses as a platform for commercial innovation in crop improvement, industrial product manufacturing, and human and veterinary health care. The authors, who work in the plant viral “vectorology” field, have Bill Dawson to thank in some way for their scientific pedigree, and they are honored that he contributed the opening chapter of this volume with the history of plant virus vector development: “A vector is not a virus; it is a device designed to perform a specific function.” Other contributors have provided fascinating reviews of how plant viral vectors have been adapted to serve specific functions, from plant gene function discovery to nanotechnology, providing infinitely scalable manufacturing systems valuable for human therapeutics. .
Molecular virology. --- Plant immunology. --- Plant viruses. --- Virus diseases of plants. --- Plant virus diseases --- Plants --- Phytopathogenic viruses --- Plant virology --- Immunology, Plant --- Viruses --- Virus diseases --- Molecular aspects --- Medicine. --- Vaccines. --- Virology. --- Biomedicine. --- Vaccine. --- Microbiology --- Biologicals --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Medical sciences --- Pathology --- Physicians --- Plant diseases --- Plant viruses --- Phytopathogenic microorganisms --- Virus diseases of plants --- Immunology --- Molecular microbiology --- Virology --- Disease and pest resistance --- Medical virology. --- Medical microbiology
Choose an application
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones—available for many plant viruses—has been used for identification of viral determinants involved in virus–host and virus–vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus–plant–vector combinations. In most cases, the diverse outcomes resulting from virus–virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus–plant host interactions, virus–vector interactions, virus–virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
Research & information: general --- Biology, life sciences --- whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant-virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution --- whitefly --- begomovirus --- Vta1 --- virus transmission --- coat proteins --- membrane association --- topology --- cilevirus --- movement protein --- p29 capsid protein --- barley yellow dwarf virus --- BYDV --- wheat --- barley --- yield loss --- vectors --- aphids --- persistent virus --- Amalgaviridae --- synergism --- antagonism --- vsiRNAs --- miRNAs --- mixed-infections --- Arabidopsis thaliana --- Cucumber mosaic virus --- genome-wide association studies --- plant-virus interaction --- seed transmission --- virulence --- callose --- coat protein --- plasmodesmata --- triple gene block --- viral suppressor --- virus movement --- virus replication complex --- TYLCD --- TYLCV --- tomato --- Solanum lycopersicum --- disease resistance --- plant breeding --- PAMP-triggered immunity --- effector-triggered immunity --- RNA silencing --- viral suppressors --- NIK1 --- PTI --- ETI --- geminiviruses --- host jumping --- viral evolution --- trade-off --- plant virus --- RNA virus --- potyvirus --- Plum pox virus --- VPg --- eIF4E --- high-throughput sequencing --- bioinformatics --- detection --- discovery --- MinION --- nanopore sequencing --- rolling circle amplification --- viral metagenomics --- CRESS DNA --- capulavirus --- homopolymer --- Begomovirus --- cucumber --- mechanical inoculation --- real-time PCR --- viral load --- QTLs --- resistance --- Geminiviridae --- sweepoviruses --- DNA satellites --- Deltasatellite --- helper virus range --- transreplication --- high-throughput sequencing (HTS) --- virus --- dsRNA --- total RNA --- OLV1 --- LRNV --- ToFBV --- ASGV --- host adaptation --- virus evolution