Narrow your search

Library

ULiège (11)

FARO (10)

KU Leuven (10)

LUCA School of Arts (10)

Odisee (10)

Thomas More Kempen (10)

Thomas More Mechelen (10)

UCLL (10)

VIVES (10)

Vlaams Parlement (10)

More...

Resource type

book (26)

article (1)


Language

English (27)


Year
From To Submit

2022 (1)

2021 (19)

2020 (6)

1999 (1)

Listing 11 - 20 of 27 << page
of 3
>>
Sort by

Book
Advances in Thermal Spray Technology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.


Book
Advanced Coatings for Corrosion Protection
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Corrosion is a significant issue in many industrial fields. Among other strategies, coatings are by far the most important technology for corrosion protection of metallic surfaces. The Special Issue “Advanced Coatings for Corrosion Protection” has been launched as a means to present recent developments in any type of advanced coating for corrosion protection. This book compiles 15 contributions on metallic, inorganic, polymeric and nanoparticle enhanced coatings that provide corrosion protection as well as other functionalities.

Keywords

Research & information: general --- fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W-Cr-C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings


Book
Advanced Coatings for Corrosion Protection
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Corrosion is a significant issue in many industrial fields. Among other strategies, coatings are by far the most important technology for corrosion protection of metallic surfaces. The Special Issue “Advanced Coatings for Corrosion Protection” has been launched as a means to present recent developments in any type of advanced coating for corrosion protection. This book compiles 15 contributions on metallic, inorganic, polymeric and nanoparticle enhanced coatings that provide corrosion protection as well as other functionalities.

Keywords

Research & information: general --- fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W–Cr–C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings --- n/a --- W-Cr-C coating


Book
Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.

Keywords

History of engineering & technology --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating–bending fatigue --- tension–compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti–Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- n/a --- rotating-bending fatigue --- tension-compression fatigue --- Ti-Fe


Book
Supplementary Cementitious Materials in Concrete
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The articles featured in this Special Issue cover different aspects of the design, testing, and application of various types of supplementary cementitious materials in concrete. The results of the research, conducted by over 50 international universities and scientific centers, prove the great interest in the SCM topic.

Keywords

Technology: general issues --- crystalline admixture --- chemical exposure --- sulphuric acid attack --- durability --- Xypex --- fly ash --- substitution strategy --- structural concrete --- steel reinforcement --- limit states --- RC beams in bending --- carbon footprint --- concrete --- carbonation modeling --- calcareous fly ash --- biomass --- wood ash --- fibrocement --- strength --- mortar --- clean coal combustion --- fluidized bed fly ash --- microstructure --- phase composition --- portlandite --- unburned carbon --- slag --- soil stabilization --- embankment --- cement --- lime --- high temperature --- damage --- permeability --- CEMI and CEMIII --- mechanical properties --- alkali-activated concrete --- geopolymer concrete --- flexure --- beams --- fiber-reinforced concrete --- crack spacing --- tension stiffening --- bamboo ash --- supplementary materials --- elevated temperature --- high volume fly ash (HVFA) --- steel reinforcing fiber --- jacketing --- environmental impact --- fibre reinforced --- alkali-activated --- strain hardening --- recycled cementitious supplementary material --- comprehensive concrete recycling --- recycled fine fraction --- rehydration reactivity --- compressive strength --- ground granulated blast furnace slag --- apparent activation energy --- equivalent age --- construction debris --- recycling --- circular economy --- eco-friendly concretes --- fly ash (FA) --- silica fume (SF) --- palm oil fuel ash (POFA) --- rice husk ash (RHA) --- sewage sludge ash (SSA) and sugarcane bagasse ash (SBA) --- mine tailings --- marble dust --- construction and demolition debris (CDD) --- porous feldspar --- activation --- substitute material --- energy saving concrete --- calcined clay --- binder --- supplementary cementitious materials --- cement-based materials --- steatite --- wood particles --- Portland cement --- fire performance --- tensile strength --- micro-silica/silica fume --- steel fiber --- high performance concrete (HPC) --- self-consolidating concrete (SCC) --- flowability --- freeze-thaw cycle --- fire resistance --- bentonite --- clays --- cryogenic condition --- GGBS --- thermal conductivity --- semi-adiabatic test --- n/a --- Technology.


Book
Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.

Keywords

Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating–bending fatigue --- tension–compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti–Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion --- n/a --- rotating-bending fatigue --- tension-compression fatigue --- Ti-Fe


Book
Supplementary Cementitious Materials in Concrete
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The articles featured in this Special Issue cover different aspects of the design, testing, and application of various types of supplementary cementitious materials in concrete. The results of the research, conducted by over 50 international universities and scientific centers, prove the great interest in the SCM topic.

Keywords

crystalline admixture --- chemical exposure --- sulphuric acid attack --- durability --- Xypex --- fly ash --- substitution strategy --- structural concrete --- steel reinforcement --- limit states --- RC beams in bending --- carbon footprint --- concrete --- carbonation modeling --- calcareous fly ash --- biomass --- wood ash --- fibrocement --- strength --- mortar --- clean coal combustion --- fluidized bed fly ash --- microstructure --- phase composition --- portlandite --- unburned carbon --- slag --- soil stabilization --- embankment --- cement --- lime --- high temperature --- damage --- permeability --- CEMI and CEMIII --- mechanical properties --- alkali-activated concrete --- geopolymer concrete --- flexure --- beams --- fiber-reinforced concrete --- crack spacing --- tension stiffening --- bamboo ash --- supplementary materials --- elevated temperature --- high volume fly ash (HVFA) --- steel reinforcing fiber --- jacketing --- environmental impact --- fibre reinforced --- alkali-activated --- strain hardening --- recycled cementitious supplementary material --- comprehensive concrete recycling --- recycled fine fraction --- rehydration reactivity --- compressive strength --- ground granulated blast furnace slag --- apparent activation energy --- equivalent age --- construction debris --- recycling --- circular economy --- eco-friendly concretes --- fly ash (FA) --- silica fume (SF) --- palm oil fuel ash (POFA) --- rice husk ash (RHA) --- sewage sludge ash (SSA) and sugarcane bagasse ash (SBA) --- mine tailings --- marble dust --- construction and demolition debris (CDD) --- porous feldspar --- activation --- substitute material --- energy saving concrete --- calcined clay --- binder --- supplementary cementitious materials --- cement-based materials --- steatite --- wood particles --- Portland cement --- fire performance --- tensile strength --- micro-silica/silica fume --- steel fiber --- high performance concrete (HPC) --- self-consolidating concrete (SCC) --- flowability --- freeze-thaw cycle --- fire resistance --- bentonite --- clays --- cryogenic condition --- GGBS --- thermal conductivity --- semi-adiabatic test --- n/a --- Technology.


Book
Supplementary Cementitious Materials in Concrete
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The articles featured in this Special Issue cover different aspects of the design, testing, and application of various types of supplementary cementitious materials in concrete. The results of the research, conducted by over 50 international universities and scientific centers, prove the great interest in the SCM topic.

Keywords

Technology. --- crystalline admixture --- chemical exposure --- sulphuric acid attack --- durability --- Xypex --- fly ash --- substitution strategy --- structural concrete --- steel reinforcement --- limit states --- RC beams in bending --- carbon footprint --- concrete --- carbonation modeling --- calcareous fly ash --- biomass --- wood ash --- fibrocement --- strength --- mortar --- clean coal combustion --- fluidized bed fly ash --- microstructure --- phase composition --- portlandite --- unburned carbon --- slag --- soil stabilization --- embankment --- cement --- lime --- high temperature --- damage --- permeability --- CEMI and CEMIII --- mechanical properties --- alkali-activated concrete --- geopolymer concrete --- flexure --- beams --- fiber-reinforced concrete --- crack spacing --- tension stiffening --- bamboo ash --- supplementary materials --- elevated temperature --- high volume fly ash (HVFA) --- steel reinforcing fiber --- jacketing --- environmental impact --- fibre reinforced --- alkali-activated --- strain hardening --- recycled cementitious supplementary material --- comprehensive concrete recycling --- recycled fine fraction --- rehydration reactivity --- compressive strength --- ground granulated blast furnace slag --- apparent activation energy --- equivalent age --- construction debris --- recycling --- circular economy --- eco-friendly concretes --- fly ash (FA) --- silica fume (SF) --- palm oil fuel ash (POFA) --- rice husk ash (RHA) --- sewage sludge ash (SSA) and sugarcane bagasse ash (SBA) --- mine tailings --- marble dust --- construction and demolition debris (CDD) --- porous feldspar --- activation --- substitute material --- energy saving concrete --- calcined clay --- binder --- supplementary cementitious materials --- cement-based materials --- steatite --- wood particles --- Portland cement --- fire performance --- tensile strength --- micro-silica/silica fume --- steel fiber --- high performance concrete (HPC) --- self-consolidating concrete (SCC) --- flowability --- freeze-thaw cycle --- fire resistance --- bentonite --- clays --- cryogenic condition --- GGBS --- thermal conductivity --- semi-adiabatic test


Book
Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Severe plastic deformation (SPD) is a very attractive research field for metallic materials because it provides new possibilities for manufacturing nanostructured materials in large quantities and allows microstructural design on different hierarchical levels. The papers included in this issue address the following topics: novel SPD processes as well as recent advancements in established processing methods, microstructure evolution and grain refinement in single- and multi-phase alloys as well as composites, strategies to enhance the microstructure stability at elevated temperatures, mechanically driven phase transformations, surface nanostructuring, gradient and multilayered materials, and mechanical and physical properties of SPD-processed materials.

Keywords

History of engineering & technology --- Mg-3.7Al-1.8Ca-0.4Mn alloy --- Al2Ca phase --- equal channel angular pressing --- refinement --- mechanical properties --- aluminium copper-clad rod --- hardness --- effective electrical conductivity --- severe plastic deformation --- Mg-9Li duplex alloy --- ECAP --- rolling --- high strength --- microstructure --- high pressure torsion extrusion --- gradient structure --- hardness distribution --- tensile properties --- copper --- high pressure torsion --- microstructural characterization --- magnetic properties --- hysteresis --- magneto-resistance --- β titanium alloys --- α phase precipitation --- phase composition --- high energy synchrotron X-ray diffraction --- metastable β-Ti alloys --- powder metallurgy --- cryogenic milling --- spark plasma sintering --- surface mechanical attrition treatment (SMAT) --- ultrasonic shot peening (USP) --- functionally graded materials (FGM) --- titanium niobium alloys --- titanium molybdenum alloys --- human mesenchymal stem cells culture --- cell adhesion --- cell proliferation --- magnesium --- equal-channel angular pressing --- deformation tests --- texture --- schmid factor --- cryogenic temperature --- 304L austenitic stainless steel --- rotating-bending fatigue --- tension-compression fatigue --- TiNi alloy --- thermal cycling --- ultrafine-grained structure --- microstructural and mechanical stability --- Ti-Fe --- high-pressure torsion --- high-temperature XRD --- differential scanning calorimetry --- phase diagram --- CalPhaD --- Mg alloy --- severe plastic deformation (SPD) --- intermetallic precipitates --- vacancy agglomerates --- corrosion


Book
New Advances in High-Entropy Alloys
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed.

Keywords

high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys

Listing 11 - 20 of 27 << page
of 3
>>
Sort by