Choose an application
In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed.
Technology: general issues --- RE prospects and challenges --- RE regulations and policy --- RE in Bangladesh --- geothermal energy --- induced seismicity --- fault --- Basel --- poroelasticity --- HEM --- PV sizing --- Load scheduling --- Dijkstra Algorithm --- BPSO --- GA --- optimization --- wind farm --- pumped storage --- isolated systems --- power plant efficiency --- compact pigeon-inspired optimization --- maximum short-term generation --- swarm intelligence --- hydroelectric power station --- strategic planning --- site selection process --- offshore wind farms --- geographic information systems --- portfolio analysis --- Greece --- renewable energy --- photovoltaic generation --- battery storage --- reliability evaluation --- Monte Carlo Simulation --- photovoltaics (PV) --- biomass --- off-grid electrification --- feasibility analysis --- cost analysis --- simple payback period --- CO2 emissions --- residential energy-related CO2 emissions --- less developed regions --- urban and rural regions --- LMDI --- Tapio decoupling --- Jiangxi province --- Hybrid energy system --- wind power --- photovoltaic --- hosting capacity --- distribution system --- integrated system --- floating buoy --- offshore structure --- wave energy converter --- non-negative spring stiffness --- renewable–growth hypothesis --- renewable electricity --- economic growth --- renewable manufacturing --- energy–growth nexus --- inverters --- converters --- distributed generators --- utility grid --- hierarchical control --- PHEV --- NEDC --- WLTP --- energy consumption --- NEV credit regulation --- subsidy policy --- frequency control --- power system stability --- variable renewable energy sources --- wind power plants --- photovoltaic power plants --- wave energy converters --- heaving point absorber --- design and performance --- spatial and temporal variation --- emergy --- emergetic ternary diagrams --- sustainability --- environmental loading --- energy systems assessment --- solar updraft tower --- artificial neural network --- principal component analysis --- wave overtopping rate --- photovoltaic spatial planning --- photovoltaic carrying capacity --- influence factors --- optimization strategies --- carrying capacity distribution --- planning adjustment --- renewable energy resources --- grid integrated solar PV systems --- sustainable power generation --- maximum power point tracking --- grid reliability and voltage source converter
Choose an application
Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.
History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency
Choose an application
This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.eng
History of engineering & technology --- microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays
Choose an application
The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters.
Technology: general issues --- isolated microgrid --- renewable energy source --- diesel generator --- battery energy storage system --- hierarchical control --- power systems --- floquet multiplier --- poincaré map --- time series data --- DFIG --- renewable energy --- battery energy storage system (BESS) --- control strategy --- modular multilevel converter --- state-of-charge (SOC) equalization --- preliminary design --- optimization --- rotor loss --- guide vane outlet flow angle --- radial turbine --- CAES --- deadbeat control --- discrete space vector modulation --- computation efficiency --- model predictive control --- grid connected system --- three-level system --- T-type inverter --- PV diagnosis --- ESS application --- DC power flow --- DC system dynamics --- hybrid generation system --- phase-locked loop (PLL) --- synchronization --- hybrid filter --- low-cost hybrid converter --- bi-directional converter --- parallel configuration of converters --- converter for multi-MW wind generator --- offshore wind energy converter applications --- AC-DC matrix converter --- virtual space vector --- DC ripple reduction --- microgeneration --- solar energy --- photovoltaic --- crowd funding --- solid-state circuit breaker --- microgrid protection --- DC protection --- SSCB --- short-term load forecasting --- two-stage forecasting model --- combined cooling heating and power --- energy operation plan --- economic analysis --- calculation load --- iterative methods --- fault restoration --- distribution generation --- temporary fault ride-through --- voltage control --- inrush current control
Choose an application
This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.eng
microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays
Choose an application
The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters.
isolated microgrid --- renewable energy source --- diesel generator --- battery energy storage system --- hierarchical control --- power systems --- floquet multiplier --- poincaré map --- time series data --- DFIG --- renewable energy --- battery energy storage system (BESS) --- control strategy --- modular multilevel converter --- state-of-charge (SOC) equalization --- preliminary design --- optimization --- rotor loss --- guide vane outlet flow angle --- radial turbine --- CAES --- deadbeat control --- discrete space vector modulation --- computation efficiency --- model predictive control --- grid connected system --- three-level system --- T-type inverter --- PV diagnosis --- ESS application --- DC power flow --- DC system dynamics --- hybrid generation system --- phase-locked loop (PLL) --- synchronization --- hybrid filter --- low-cost hybrid converter --- bi-directional converter --- parallel configuration of converters --- converter for multi-MW wind generator --- offshore wind energy converter applications --- AC-DC matrix converter --- virtual space vector --- DC ripple reduction --- microgeneration --- solar energy --- photovoltaic --- crowd funding --- solid-state circuit breaker --- microgrid protection --- DC protection --- SSCB --- short-term load forecasting --- two-stage forecasting model --- combined cooling heating and power --- energy operation plan --- economic analysis --- calculation load --- iterative methods --- fault restoration --- distribution generation --- temporary fault ride-through --- voltage control --- inrush current control
Choose an application
Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.
three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency
Choose an application
In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed.
RE prospects and challenges --- RE regulations and policy --- RE in Bangladesh --- geothermal energy --- induced seismicity --- fault --- Basel --- poroelasticity --- HEM --- PV sizing --- Load scheduling --- Dijkstra Algorithm --- BPSO --- GA --- optimization --- wind farm --- pumped storage --- isolated systems --- power plant efficiency --- compact pigeon-inspired optimization --- maximum short-term generation --- swarm intelligence --- hydroelectric power station --- strategic planning --- site selection process --- offshore wind farms --- geographic information systems --- portfolio analysis --- Greece --- renewable energy --- photovoltaic generation --- battery storage --- reliability evaluation --- Monte Carlo Simulation --- photovoltaics (PV) --- biomass --- off-grid electrification --- feasibility analysis --- cost analysis --- simple payback period --- CO2 emissions --- residential energy-related CO2 emissions --- less developed regions --- urban and rural regions --- LMDI --- Tapio decoupling --- Jiangxi province --- Hybrid energy system --- wind power --- photovoltaic --- hosting capacity --- distribution system --- integrated system --- floating buoy --- offshore structure --- wave energy converter --- non-negative spring stiffness --- renewable–growth hypothesis --- renewable electricity --- economic growth --- renewable manufacturing --- energy–growth nexus --- inverters --- converters --- distributed generators --- utility grid --- hierarchical control --- PHEV --- NEDC --- WLTP --- energy consumption --- NEV credit regulation --- subsidy policy --- frequency control --- power system stability --- variable renewable energy sources --- wind power plants --- photovoltaic power plants --- wave energy converters --- heaving point absorber --- design and performance --- spatial and temporal variation --- emergy --- emergetic ternary diagrams --- sustainability --- environmental loading --- energy systems assessment --- solar updraft tower --- artificial neural network --- principal component analysis --- wave overtopping rate --- photovoltaic spatial planning --- photovoltaic carrying capacity --- influence factors --- optimization strategies --- carrying capacity distribution --- planning adjustment --- renewable energy resources --- grid integrated solar PV systems --- sustainable power generation --- maximum power point tracking --- grid reliability and voltage source converter
Choose an application
Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.
History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency
Choose an application
This book is aimed at serving researchers, engineers, scientists, and engineering graduate and PhD students of engineering and physical science together with individuals interested in engineering and science. This book focuses on the application of engineering methods to complex systems including transportation, building, and manufacturing, with approaches representing a wide variety of disciplines of engineering and science. Throughout the book, great emphases are placed on engineering applications of complex systems, as well as the methodologies of automation, including artificial intelligence, automated and intelligent control, energy analysis, energy modelling, energy management, and optimised energy efficiency. The significant impact of recent studies that have been selected for presentation are of high interest in engineering complex systems. An attempt has been made to expose the reading audience of engineers and researchers to a broad range of theoretical and practical topics. The topics contained in the present book are of specific interest to engineers who are seeking expertise in transportation, building, and manufacturing technologies as well as mathematical modelling of complex systems, engineering approaches to engineering complex problems, automation via artificial intelligence methods, automated and intelligent control, and energy systems. The primary audience of this book are researchers, graduate students, and engineers in mechanical engineering, control engineering, computer engineering, electrical engineering, and science disciplines. In particular, the book can be used for training graduate and PhD students as well as senior undergraduate students to enhance their knowledge by taking a graduate or advanced undergraduate course in the areas of complex systems, control systems, energy systems, and engineering applications. The covered research topics are also of interest to engineers and academia who are seeking to expand their expertise in these areas.eng
History of engineering & technology --- microstructure --- carbon fibers --- polyacrylonitrile --- thermal stabilization --- recirculation fan frequency --- IR imaging --- extended-range electric bus --- adaptive-equivalent consumption minimum strategy --- Markov chain --- target driving cycles --- SOC reference curve --- energy management system --- building automation systems --- building energy efficiency --- daytime lighting --- lighting control systems --- EN 15232 standard --- four-wheel independent-drive --- electric vehicle --- skid steering --- differential steering --- sliding mode variable structure control --- robustness --- active 4WS system --- hierarchical control --- decoupling --- fractional sliding mode control --- vehicle-to-grid --- EV charging infrastructure --- optimal dispatch --- oil-to-electricity transformation for automobiles --- permanent magnet synchronous motor --- sliding mode control --- motion control --- fractional order --- sliding surface --- composite controller --- intelligent control (IC) --- fuzzy cognitive map (FCM) --- direct expansion air-conditioning (DX A/C) --- nonlinear --- coupling effect --- MIMO --- stability analysis --- Lyapunov function --- fuzzy bidirectional associative memories (FBAMs) --- URT --- multi-train optimization --- steep slope --- electrical network model --- regenerative energy dynamic losses --- Air-Conditioning --- On-Off control --- desert climate --- optimization --- Elman Neural Networks --- event-based consensus --- hierarchical leader–follower network --- hierarchical event-based control --- layer-to-layer delays