Listing 11 - 15 of 15 | << page >> |
Sort by
|
Choose an application
Flow analysis is an automatic, precise and fast way to perform analytical tests. Flow instruments are used for clinical and pharmaceutical analyses, quality control of industrial products, monitoring of environmental pollution and many other fields. The book presents the latest methodological, technical and instrumental achievements in flow analysis. It shows new possibilities for the miniaturization and full mechanization of flow systems, together with examples of their interesting application. The proposed solutions contribute to reducing the amount of used reagents and waste, as well as increasing the safety of working with hazardous reagents, resulting in modern devices operating in accordance with the principles of green chemistry. A number of innovative methods of processing and measuring analytical samples have also been described. The book very well reflects the current state of flow analysis and development directions.
Research & information: general --- cholesterol --- serum samples --- lab-on-valve --- automation --- enzymatic reaction --- neonicotinoid --- thiacloprid --- solid-phase spectroscopy --- optosensor --- luminescence --- bioaccessibility --- dog food --- dog nutrition --- dynamic extraction --- flow analysis --- kinetic profile --- zinc --- nuclear waste --- spent nuclear fuel --- ß-emitting nuclides --- 90Sr --- flow injection --- ICP-DRC-MS --- flow synthesis --- flow reactors --- flow-injection analysis --- flow techniques --- radionuclides --- radiochemical separation --- environmental monitoring --- nuclear emergency preparedness --- radioactive waste characterization --- medical isotope production --- titration --- Fe(III), Fe(II) determination --- speciation analysis --- Lab-In-Syringe --- automation of sample pretreatment --- potentials and troubles --- system setup and operation modes --- tips and tricks in method development --- 3D printing of instrument elements --- histidine --- random human urine --- zone fluidics --- o-phthalaldehyde --- derivatization --- stopped-flow --- fluorimetry --- SI-LAV --- mono-segmented flow --- in-line dilution --- in-line single-standard calibration --- in-line standard addition --- albumin --- glucose --- creatinine --- flow method --- chitosan --- catalyst particles --- micron-size --- sampling study --- p-nitrophenol reduction --- preconcentration --- evaporation --- sequential injection analysis --- paired emitter–detector diode detector --- contactless conductivity detector --- flow-based analysis --- simultaneous detection --- sequential detection --- flow chemistry
Choose an application
Flow analysis is an automatic, precise and fast way to perform analytical tests. Flow instruments are used for clinical and pharmaceutical analyses, quality control of industrial products, monitoring of environmental pollution and many other fields. The book presents the latest methodological, technical and instrumental achievements in flow analysis. It shows new possibilities for the miniaturization and full mechanization of flow systems, together with examples of their interesting application. The proposed solutions contribute to reducing the amount of used reagents and waste, as well as increasing the safety of working with hazardous reagents, resulting in modern devices operating in accordance with the principles of green chemistry. A number of innovative methods of processing and measuring analytical samples have also been described. The book very well reflects the current state of flow analysis and development directions.
cholesterol --- serum samples --- lab-on-valve --- automation --- enzymatic reaction --- neonicotinoid --- thiacloprid --- solid-phase spectroscopy --- optosensor --- luminescence --- bioaccessibility --- dog food --- dog nutrition --- dynamic extraction --- flow analysis --- kinetic profile --- zinc --- nuclear waste --- spent nuclear fuel --- ß-emitting nuclides --- 90Sr --- flow injection --- ICP-DRC-MS --- flow synthesis --- flow reactors --- flow-injection analysis --- flow techniques --- radionuclides --- radiochemical separation --- environmental monitoring --- nuclear emergency preparedness --- radioactive waste characterization --- medical isotope production --- titration --- Fe(III), Fe(II) determination --- speciation analysis --- Lab-In-Syringe --- automation of sample pretreatment --- potentials and troubles --- system setup and operation modes --- tips and tricks in method development --- 3D printing of instrument elements --- histidine --- random human urine --- zone fluidics --- o-phthalaldehyde --- derivatization --- stopped-flow --- fluorimetry --- SI-LAV --- mono-segmented flow --- in-line dilution --- in-line single-standard calibration --- in-line standard addition --- albumin --- glucose --- creatinine --- flow method --- chitosan --- catalyst particles --- micron-size --- sampling study --- p-nitrophenol reduction --- preconcentration --- evaporation --- sequential injection analysis --- paired emitter–detector diode detector --- contactless conductivity detector --- flow-based analysis --- simultaneous detection --- sequential detection --- flow chemistry
Choose an application
This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.
PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)—PHBH --- poly(ε-caprolactone)—PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- n/a --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL
Choose an application
Flow analysis is an automatic, precise and fast way to perform analytical tests. Flow instruments are used for clinical and pharmaceutical analyses, quality control of industrial products, monitoring of environmental pollution and many other fields. The book presents the latest methodological, technical and instrumental achievements in flow analysis. It shows new possibilities for the miniaturization and full mechanization of flow systems, together with examples of their interesting application. The proposed solutions contribute to reducing the amount of used reagents and waste, as well as increasing the safety of working with hazardous reagents, resulting in modern devices operating in accordance with the principles of green chemistry. A number of innovative methods of processing and measuring analytical samples have also been described. The book very well reflects the current state of flow analysis and development directions.
Research & information: general --- cholesterol --- serum samples --- lab-on-valve --- automation --- enzymatic reaction --- neonicotinoid --- thiacloprid --- solid-phase spectroscopy --- optosensor --- luminescence --- bioaccessibility --- dog food --- dog nutrition --- dynamic extraction --- flow analysis --- kinetic profile --- zinc --- nuclear waste --- spent nuclear fuel --- ß-emitting nuclides --- 90Sr --- flow injection --- ICP-DRC-MS --- flow synthesis --- flow reactors --- flow-injection analysis --- flow techniques --- radionuclides --- radiochemical separation --- environmental monitoring --- nuclear emergency preparedness --- radioactive waste characterization --- medical isotope production --- titration --- Fe(III), Fe(II) determination --- speciation analysis --- Lab-In-Syringe --- automation of sample pretreatment --- potentials and troubles --- system setup and operation modes --- tips and tricks in method development --- 3D printing of instrument elements --- histidine --- random human urine --- zone fluidics --- o-phthalaldehyde --- derivatization --- stopped-flow --- fluorimetry --- SI-LAV --- mono-segmented flow --- in-line dilution --- in-line single-standard calibration --- in-line standard addition --- albumin --- glucose --- creatinine --- flow method --- chitosan --- catalyst particles --- micron-size --- sampling study --- p-nitrophenol reduction --- preconcentration --- evaporation --- sequential injection analysis --- paired emitter–detector diode detector --- contactless conductivity detector --- flow-based analysis --- simultaneous detection --- sequential detection --- flow chemistry
Choose an application
This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.
Technology: general issues --- History of engineering & technology --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution
Listing 11 - 15 of 15 | << page >> |
Sort by
|