Listing 11 - 20 of 24 << page
of 3
>>
Sort by
Lectures on resolution of singularities
Author:
ISBN: 0691129231 0691129223 9786612157745 1282157744 1400827809 9781400827800 9780691129228 9780691129235 9781282157743 Year: 2007 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem.

Keywords

Singularities (Mathematics) --- 512.761 --- Geometry, Algebraic --- Singularities. Singular points of algebraic varieties --- 512.761 Singularities. Singular points of algebraic varieties --- Adjunction formula. --- Algebraic closure. --- Algebraic geometry. --- Algebraic space. --- Algebraic surface. --- Algebraic variety. --- Approximation. --- Asymptotic analysis. --- Automorphism. --- Bernhard Riemann. --- Big O notation. --- Birational geometry. --- C0. --- Canonical singularity. --- Codimension. --- Cohomology. --- Commutative algebra. --- Complex analysis. --- Complex manifold. --- Computability. --- Continuous function. --- Coordinate system. --- Diagram (category theory). --- Differential geometry of surfaces. --- Dimension. --- Divisor. --- Du Val singularity. --- Dual graph. --- Embedding. --- Equation. --- Equivalence relation. --- Euclidean algorithm. --- Factorization. --- Functor. --- General position. --- Generic point. --- Geometric genus. --- Geometry. --- Hyperplane. --- Hypersurface. --- Integral domain. --- Intersection (set theory). --- Intersection number (graph theory). --- Intersection theory. --- Irreducible component. --- Isolated singularity. --- Laurent series. --- Line bundle. --- Linear space (geometry). --- Linear subspace. --- Mathematical induction. --- Mathematics. --- Maximal ideal. --- Morphism. --- Newton polygon. --- Noetherian ring. --- Noetherian. --- Open problem. --- Open set. --- P-adic number. --- Pairwise. --- Parametric equation. --- Partial derivative. --- Plane curve. --- Polynomial. --- Power series. --- Principal ideal. --- Principalization (algebra). --- Projective space. --- Projective variety. --- Proper morphism. --- Puiseux series. --- Quasi-projective variety. --- Rational function. --- Regular local ring. --- Resolution of singularities. --- Riemann surface. --- Ring theory. --- Ruler. --- Scientific notation. --- Sheaf (mathematics). --- Singularity theory. --- Smooth morphism. --- Smoothness. --- Special case. --- Subring. --- Summation. --- Surjective function. --- Tangent cone. --- Tangent space. --- Tangent. --- Taylor series. --- Theorem. --- Topology. --- Toric variety. --- Transversal (geometry). --- Variable (mathematics). --- Weierstrass preparation theorem. --- Weierstrass theorem. --- Zero set. --- Differential geometry. Global analysis

Spherical CR geometry and Dehn surgery
Author:
ISBN: 069112809X 1400837197 0691128103 9780691128108 9781400837199 9780691128092 Year: 2007 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids "ations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry.

Keywords

CR submanifolds. --- Dehn surgery (Topology). --- Three-manifolds (Topology). --- CR submanifolds --- Dehn surgery (Topology) --- Three-manifolds (Topology) --- Mathematics --- Physical Sciences & Mathematics --- Geometry --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Cauchy-Riemann submanifolds --- Submanifolds, CR --- Low-dimensional topology --- Topological manifolds --- Surgery (Topology) --- Manifolds (Mathematics) --- Arc (geometry). --- Automorphism. --- Ball (mathematics). --- Bijection. --- Bump function. --- CR manifold. --- Calculation. --- Canonical basis. --- Cartesian product. --- Clifford torus. --- Combinatorics. --- Compact space. --- Conjugacy class. --- Connected space. --- Contact geometry. --- Convex cone. --- Convex hull. --- Coprime integers. --- Coset. --- Covering space. --- Dehn surgery. --- Dense set. --- Diagram (category theory). --- Diameter. --- Diffeomorphism. --- Differential geometry of surfaces. --- Discrete group. --- Double coset. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence class. --- Equivalence relation. --- Euclidean distance. --- Four-dimensional space. --- Function (mathematics). --- Fundamental domain. --- Geometry and topology. --- Geometry. --- Harmonic function. --- Hexagonal tiling. --- Holonomy. --- Homeomorphism. --- Homology (mathematics). --- Homotopy. --- Horosphere. --- Hyperbolic 3-manifold. --- Hyperbolic Dehn surgery. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hyperbolic triangle. --- Hypersurface. --- I0. --- Ideal triangle. --- Intermediate value theorem. --- Intersection (set theory). --- Isometry group. --- Isometry. --- Limit point. --- Limit set. --- Manifold. --- Mathematical induction. --- Metric space. --- Möbius transformation. --- Parameter. --- Parity (mathematics). --- Partial derivative. --- Partition of unity. --- Permutation. --- Polyhedron. --- Projection (linear algebra). --- Projectivization. --- Quotient space (topology). --- R-factor (crystallography). --- Real projective space. --- Right angle. --- Sard's theorem. --- Seifert fiber space. --- Set (mathematics). --- Siegel domain. --- Simply connected space. --- Solid torus. --- Special case. --- Sphere. --- Stereographic projection. --- Subgroup. --- Subsequence. --- Subset. --- Tangent space. --- Tangent vector. --- Tetrahedron. --- Theorem. --- Topology. --- Torus. --- Transversality (mathematics). --- Triangle group. --- Union (set theory). --- Unit disk. --- Unit sphere. --- Unit tangent bundle.

On the Tangent
Author:
ISBN: 0691120439 0691120447 1299133258 1400837170 9780691120430 9781400837175 9780691120447 9781299133259 Year: 2004 Volume: no. 157 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications.

Keywords

512.73 --- Cohomology theory of algebraic varieties and schemes --- 512.73 Cohomology theory of algebraic varieties and schemes --- Algebraic cycles. --- Hodge theory. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Complex manifolds --- Differentiable manifolds --- Geometry, Algebraic --- Homology theory --- Cycles, Algebraic --- Algebraic cycles --- Hodge theory --- Addition. --- Algebraic K-theory. --- Algebraic character. --- Algebraic curve. --- Algebraic cycle. --- Algebraic function. --- Algebraic geometry. --- Algebraic number. --- Algebraic surface. --- Algebraic variety. --- Analytic function. --- Approximation. --- Arithmetic. --- Chow group. --- Codimension. --- Coefficient. --- Coherent sheaf cohomology. --- Coherent sheaf. --- Cohomology. --- Cokernel. --- Combination. --- Compass-and-straightedge construction. --- Complex geometry. --- Complex number. --- Computable function. --- Conjecture. --- Coordinate system. --- Coprime integers. --- Corollary. --- Cotangent bundle. --- Diagram (category theory). --- Differential equation. --- Differential form. --- Differential geometry of surfaces. --- Dimension (vector space). --- Dimension. --- Divisor. --- Duality (mathematics). --- Elliptic function. --- Embedding. --- Equation. --- Equivalence class. --- Equivalence relation. --- Exact sequence. --- Existence theorem. --- Existential quantification. --- Fermat's theorem. --- Formal proof. --- Fourier. --- Free group. --- Functional equation. --- Generic point. --- Geometry. --- Group homomorphism. --- Hereditary property. --- Hilbert scheme. --- Homomorphism. --- Injective function. --- Integer. --- Integral curve. --- K-group. --- K-theory. --- Linear combination. --- Mathematics. --- Moduli (physics). --- Moduli space. --- Multivector. --- Natural number. --- Natural transformation. --- Neighbourhood (mathematics). --- Open problem. --- Parameter. --- Polynomial ring. --- Principal part. --- Projective variety. --- Quantity. --- Rational function. --- Rational mapping. --- Reciprocity law. --- Regular map (graph theory). --- Residue theorem. --- Root of unity. --- Scientific notation. --- Sheaf (mathematics). --- Smoothness. --- Statistical significance. --- Subgroup. --- Summation. --- Tangent space. --- Tangent vector. --- Tangent. --- Terminology. --- Tetrahedron. --- Theorem. --- Transcendental function. --- Transcendental number. --- Uniqueness theorem. --- Vector field. --- Vector space. --- Zariski topology.

The topology of fibre bundles
Author:
ISBN: 0691080550 0691005486 1400883873 9780691080550 Year: 1974 Volume: 14 Publisher: Princeton (N.J.): Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fibre bundles, now an integral part of differential geometry, are also of great importance in modern physics--such as in gauge theory. This book, a succinct introduction to the subject by renown mathematician Norman Steenrod, was the first to present the subject systematically. It begins with a general introduction to bundles, including such topics as differentiable manifolds and covering spaces. The author then provides brief surveys of advanced topics, such as homotopy theory and cohomology theory, before using them to study further properties of fibre bundles. The result is a classic and timeless work of great utility that will appeal to serious mathematicians and theoretical physicists alike.

Keywords

#WWIS:d.d. Prof. L. Bouckaert/ALTO --- 515.1 --- 515.1 Topology --- Topology --- Topology. --- Analysis situs --- Position analysis --- Rubber-sheet geometry --- Geometry --- Polyhedra --- Set theory --- Algebras, Linear --- Algebraic topology. --- Associated bundle. --- Associative algebra. --- Associative property. --- Atlas (topology). --- Automorphism. --- Axiomatic system. --- Barycentric subdivision. --- Bilinear map. --- Bundle map. --- Classification theorem. --- Coefficient. --- Cohomology ring. --- Cohomology. --- Conjugacy class. --- Connected component (graph theory). --- Connected space. --- Coordinate system. --- Coset. --- Cup product. --- Cyclic group. --- Determinant. --- Differentiable manifold. --- Differential structure. --- Dimension (vector space). --- Direct product. --- Division algebra. --- Equivalence class. --- Equivalence relation. --- Euler number. --- Existence theorem. --- Existential quantification. --- Factorization. --- Fiber bundle. --- Frenet–Serret formulas. --- Gram–Schmidt process. --- Group theory. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Homotopy group. --- Homotopy. --- Hopf theorem. --- Hurewicz theorem. --- Identity element. --- Inclusion map. --- Inner automorphism. --- Invariant subspace. --- Invertible matrix. --- Jacobian matrix and determinant. --- Klein bottle. --- Lattice of subgroups. --- Lie group. --- Line element. --- Line segment. --- Linear map. --- Linear space (geometry). --- Linear subspace. --- Manifold. --- Mapping cylinder. --- Metric tensor. --- N-sphere. --- Natural topology. --- Octonion. --- Open set. --- Orientability. --- Orthogonal group. --- Orthogonalization. --- Permutation. --- Principal bundle. --- Product topology. --- Quadratic form. --- Quaternion. --- Retract. --- Separable space. --- Set theory. --- Simplicial complex. --- Special case. --- Stiefel manifold. --- Subalgebra. --- Subbase. --- Subgroup. --- Subset. --- Symmetric tensor. --- Tangent bundle. --- Tangent space. --- Tangent vector. --- Tensor field. --- Tensor. --- Theorem. --- Tietze extension theorem. --- Topological group. --- Topological space. --- Transitive relation. --- Transpose. --- Union (set theory). --- Unit sphere. --- Universal bundle. --- Vector field.

Positive definite matrices
Author:
ISBN: 1282129740 9786612129742 1400827787 9781400827787 9781282129740 0691129185 9780691129181 6612129743 Year: 2007 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.

Keywords

Matrices. --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- 512.64 --- 512.64 Linear and multilinear algebra. Matrix theory --- Linear and multilinear algebra. Matrix theory --- Addition. --- Analytic continuation. --- Arithmetic mean. --- Banach space. --- Binomial theorem. --- Block matrix. --- Bochner's theorem. --- Calculation. --- Cauchy matrix. --- Cauchy–Schwarz inequality. --- Characteristic polynomial. --- Coefficient. --- Commutative property. --- Compact space. --- Completely positive map. --- Complex number. --- Computation. --- Continuous function. --- Convex combination. --- Convex function. --- Convex set. --- Corollary. --- Density matrix. --- Diagonal matrix. --- Differential geometry. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence relation. --- Existential quantification. --- Extreme point. --- Fourier transform. --- Functional analysis. --- Fundamental theorem. --- G. H. Hardy. --- Gamma function. --- Geometric mean. --- Geometry. --- Hadamard product (matrices). --- Hahn–Banach theorem. --- Harmonic analysis. --- Hermitian matrix. --- Hilbert space. --- Hyperbolic function. --- Infimum and supremum. --- Infinite divisibility (probability). --- Invertible matrix. --- Lecture. --- Linear algebra. --- Linear map. --- Logarithm. --- Logarithmic mean. --- Mathematics. --- Matrix (mathematics). --- Matrix analysis. --- Matrix unit. --- Metric space. --- Monotonic function. --- Natural number. --- Open set. --- Operator algebra. --- Operator system. --- Orthonormal basis. --- Partial trace. --- Positive definiteness. --- Positive element. --- Positive map. --- Positive semidefinite. --- Positive-definite function. --- Positive-definite matrix. --- Probability measure. --- Probability. --- Projection (linear algebra). --- Quantity. --- Quantum computing. --- Quantum information. --- Quantum statistical mechanics. --- Real number. --- Riccati equation. --- Riemannian geometry. --- Riemannian manifold. --- Riesz representation theorem. --- Right half-plane. --- Schur complement. --- Schur's theorem. --- Scientific notation. --- Self-adjoint operator. --- Sign (mathematics). --- Special case. --- Spectral theorem. --- Square root. --- Standard basis. --- Summation. --- Tensor product. --- Theorem. --- Toeplitz matrix. --- Unit vector. --- Unitary matrix. --- Unitary operator. --- Upper half-plane. --- Variable (mathematics).


Book
Weyl group multiple Dirichlet
Authors: --- ---
ISBN: 128301338X 9786613013385 1400838991 9781400838998 9780691150659 0691150656 9780691150666 0691150664 9781283013383 Year: 2011 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation.

Keywords

Dirichlet series. --- Weyl groups. --- Weyl's groups --- Group theory --- Series, Dirichlet --- Series --- BZL pattern. --- Class I. --- Eisenstein series. --- Euler product. --- Gauss sum. --- Gelfand-Tsetlin pattern. --- Kashiwara operator. --- Kashiwara's crystal. --- Knowability Lemma. --- Kostant partition function. --- Riemann zeta function. --- Schur polynomial. --- Schützenberger involution. --- Snake Lemma. --- Statement A. --- Statement B. --- Statement C. --- Statement D. --- Statement E. --- Statement F. --- Statement G. --- Tokuyama's Theorem. --- Weyl character formula. --- Weyl denominator. --- Weyl group multiple Dirichlet series. --- Weyl vector. --- Whittaker coefficient. --- Whittaker function. --- Yang-Baxter equation. --- Yang–Baxter equation. --- accordion. --- adele group. --- affine linear transformation. --- analytic continuation. --- analytic number theory. --- archimedean place. --- basis vector. --- bijection. --- bookkeeping. --- box-circle duality. --- boxing. --- canonical indexings. --- cardinality. --- cartoon. --- circling. --- class. --- combinatorial identity. --- concurrence. --- critical resonance. --- crystal base. --- crystal graph. --- crystal. --- divisibility condition. --- double sum. --- episode. --- equivalence relation. --- f-packet. --- free abelian group. --- functional equation. --- generating function. --- global field. --- ice-type model. --- inclusion-exclusion. --- indexing. --- involution. --- isomorphism. --- knowability. --- maximality. --- nodal signature. --- nonarchimedean local field. --- noncritical resonance. --- nonzero contribution. --- p-adic group. --- p-adic integral. --- p-adic integration. --- partition function. --- polynomial. --- preaccordion. --- prototype. --- reduced root system. --- representation theory. --- residue class field. --- resonance. --- resotope. --- row sums. --- row transfer matrix. --- short pattern. --- six-vertex model. --- snakes. --- statistical mechanics. --- subsignature. --- tableaux. --- type. --- Γ-equivalence class. --- Γ-swap.


Book
The motion of a surface by its mean curvature
Author:
ISBN: 9781400867431 1400867436 9780691611518 9780691082042 0691611513 0691639515 9780691639512 Year: 1978 Publisher: Princeton, New Jersey

Loading...
Export citation

Choose an application

Bookmark

Abstract

Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses.Originally published in 1978.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Geometric measure theory. --- Surfaces. --- Curvature. --- Measure theory --- Calculus --- Curves --- Surfaces --- Curved surfaces --- Geometry --- Shapes --- Affine transformation. --- Approximation. --- Asymptote. --- Barrier function. --- Besicovitch covering theorem. --- Big O notation. --- Bounded set (topological vector space). --- Boundedness. --- Calculation. --- Cauchy–Schwarz inequality. --- Characteristic function (probability theory). --- Compactness theorem. --- Completing the square. --- Concave function. --- Convex set. --- Convolution. --- Crystal structure. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differentiable manifold. --- Differential geometry. --- Dimension. --- Domain of a function. --- Dyadic rational. --- Equivalence relation. --- Estimation. --- Euclidean space. --- Existential quantification. --- Exterior (topology). --- First variation. --- Gaussian curvature. --- Geometry. --- Grain boundary. --- Graph of a function. --- Grassmannian. --- Harmonic function. --- Hausdorff measure. --- Heat equation. --- Heat kernel. --- Heat transfer. --- Homotopy. --- Hypersurface. --- Hölder's inequality. --- Infimum and supremum. --- Initial condition. --- Lebesgue measure. --- Lebesgue point. --- Linear space (geometry). --- Lipschitz continuity. --- Mean curvature. --- Melting point. --- Microstructure. --- Monotonic function. --- Natural number. --- Nonparametric statistics. --- Order of integration (calculus). --- Order of integration. --- Order of magnitude. --- Parabolic partial differential equation. --- Paraboloid. --- Partial differential equation. --- Permutation. --- Perpendicular. --- Pointwise. --- Probability. --- Quantity. --- Quotient space (topology). --- Radon measure. --- Regularity theorem. --- Retract. --- Rewriting. --- Riemannian manifold. --- Right angle. --- Second derivative. --- Sectional curvature. --- Semi-continuity. --- Smoothness. --- Subsequence. --- Subset. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Topology. --- Total curvature. --- Translational symmetry. --- Uniform boundedness. --- Unit circle. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Varifold. --- Vector field. --- Weight function. --- Without loss of generality.


Book
What's next? : the mathematical legacy of William P. Thurston
Author:
ISBN: 0691185891 Year: 2020 Publisher: Princeton, New Jersey ; Oxford : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

William Thurston (1946–2012) was one of the great mathematicians of the twentieth century. He was a visionary whose extraordinary ideas revolutionized a broad range of mathematical fields, from foliations, contact structures, and Teichmüller theory to automorphisms of surfaces, hyperbolic geometry, geometrization of 3-manifolds, geometric group theory, and rational maps. In addition, he discovered connections between disciplines that led to astonishing breakthroughs in mathematical understanding as well as the creation of entirely new fields. His far-reaching questions and conjectures led to enormous progress by other researchers. What's Next? brings together many of today's leading mathematicians to describe recent advances and future directions inspired by Thurston's transformative ideas.Including valuable insights from his colleagues and former students, What's Next? discusses Thurston's fundamental contributions to topology, geometry, and dynamical systems and includes many deep and original contributions to the field. This incisive and wide-ranging book also explores how he introduced new ways of thinking about and doing mathematics, innovations that have had a profound and lasting impact on the mathematical community as a whole.

Keywords

Dynamics. --- Geometry. --- Topology. --- MATHEMATICS / General. --- Analysis situs --- Position analysis --- Rubber-sheet geometry --- Geometry --- Polyhedra --- Set theory --- Algebras, Linear --- Mathematics --- Euclid's Elements --- Dynamical systems --- Kinetics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Thurston, William P., --- Thurston, W. P. --- Arbitrarily large. --- Asymptotic expansion. --- Automorphism. --- Big O notation. --- Braid group. --- Branch point. --- Central series. --- Character variety. --- Characterization (mathematics). --- Cohomology operation. --- Cohomology. --- Commutative property. --- Conjecture. --- Conjugacy class. --- Convex hull. --- Covering space. --- Coxeter group. --- Curvature. --- Dehn's lemma. --- Diagram (category theory). --- Disjoint union. --- Eigenfunction. --- Endomorphism. --- Epimorphism. --- Equivalence class. --- Equivalence relation. --- Euclidean space. --- Extreme point. --- Faithful representation. --- Fiber bundle. --- Free group. --- Free product. --- Fundamental group. --- Geometrization conjecture. --- HNN extension. --- Haar measure. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypercube. --- I0. --- Inclusion map. --- Incompressible surface. --- JSJ decomposition. --- Jordan curve theorem. --- Julia set. --- Klein bottle. --- Kleinian group. --- Lebesgue measure. --- Leech lattice. --- Limit point. --- Lyapunov exponent. --- Mahler measure. --- Manifold decomposition. --- Mapping cylinder. --- Marriage theorem. --- Maxima and minima. --- Moduli space. --- Möbius strip. --- Möbius transformation. --- Natural topology. --- Non-Euclidean geometry. --- Non-positive curvature. --- Normal subgroup. --- Open set. --- Orientability. --- Pair of pants (mathematics). --- Perfect group. --- Pleated surface. --- Polynomial. --- Preorder. --- Probability measure. --- Pullback (category theory). --- Pullback (differential geometry). --- Quadric. --- Quasi-isometry. --- Quasiconvex function. --- Rectangle. --- Riemann surface. --- Riemannian manifold. --- Saddle point. --- Sectional curvature. --- Sign (mathematics). --- Simple algebra. --- Simply connected space. --- Special case. --- Subgroup. --- Subset. --- Symplectic geometry. --- Theorem. --- Total order. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector bundle.


Book
The arithmetic of polynomial dynamical pairs
Authors: ---
ISBN: 0691235481 Year: 2023 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an 'unlikely intersection' statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco.

Keywords

MATHEMATICS / Geometry / Algebraic. --- Affine plane. --- Affine space. --- Affine transformation. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic surface. --- Algebraic variety. --- Algebraically closed field. --- Analysis. --- Analytic function. --- Analytic geometry. --- Approximation. --- Arithmetic dynamics. --- Asymmetric graph. --- Ball (mathematics). --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Characterization (mathematics). --- Chebyshev polynomials. --- Coefficient. --- Combinatorics. --- Complex manifold. --- Complex number. --- Computation. --- Computer programming. --- Conjugacy class. --- Connected component (graph theory). --- Continuous function (set theory). --- Coprime integers. --- Correspondence theorem (group theory). --- Counting. --- Critical graph. --- Cubic function. --- Datasheet. --- Disk (mathematics). --- Divisor (algebraic geometry). --- Elliptic curve. --- Equation. --- Equidistribution theorem. --- Equivalence relation. --- Euclidean topology. --- Existential quantification. --- Fixed point (mathematics). --- Function space. --- Geometric (company). --- Graph (discrete mathematics). --- Hamiltonian mechanics. --- Hausdorff dimension. --- Hausdorff measure. --- Holomorphic function. --- Inequality (mathematics). --- Instance (computer science). --- Integer. --- Intermediate value theorem. --- Intersection (set theory). --- Inverse-square law. --- Irreducible component. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Line (geometry). --- Metric space. --- Moduli space. --- Moment (mathematics). --- Montel's theorem. --- P-adic number. --- Parameter. --- Pascal's Wager. --- Periodic point. --- Polynomial. --- Power series. --- Primitive polynomial (field theory). --- Projective line. --- Quotient ring. --- Rational number. --- Realizability. --- Renormalization. --- Riemann surface. --- Ring of integers. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Sign (mathematics). --- Stone–Weierstrass theorem. --- Subharmonic function. --- Support (mathematics). --- Surjective function. --- Theorem. --- Theory. --- Topology. --- Transfer principle. --- Union (set theory). --- Unit disk. --- Variable (computer science). --- Variable (mathematics). --- Zariski topology. --- Polynomials. --- Dynamics. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Algebra --- Algebraic geometry. --- Mathematics.

C*-algebra extensions and K-homology
Author:
ISBN: 0691082650 0691082669 1400881463 Year: 1980 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent developments in diverse areas of mathematics suggest the study of a certain class of extensions of C*-algebras. Here, Ronald Douglas uses methods from homological algebra to study this collection of extensions. He first shows that equivalence classes of the extensions of the compact metrizable space X form an abelian group Ext (X). Second, he shows that the correspondence X ⃗ Ext (X) defines a homotopy invariant covariant functor which can then be used to define a generalized homology theory. Establishing the periodicity of order two, the author shows, following Atiyah, that a concrete realization of K-homology is obtained.

Keywords

Analytical spaces --- 517.986 --- Topological algebras. Theory of infinite-dimensional representations --- Algebra, Homological. --- C*-algebras. --- K-theory. --- 517.986 Topological algebras. Theory of infinite-dimensional representations --- Algebra, Homological --- C*-algebras --- K-theory --- Algebraic topology --- Homology theory --- Algebras, C star --- Algebras, W star --- C star algebras --- W star algebras --- W*-algebras --- Banach algebras --- Homological algebra --- Algebra, Abstract --- K-théorie. --- Homologie. --- Addition. --- Affine transformation. --- Algebraic topology. --- Atiyah–Singer index theorem. --- Automorphism. --- Banach algebra. --- Bijection. --- Boundary value problem. --- Bundle map. --- C*-algebra. --- Calculation. --- Cardinal number. --- Category of abelian groups. --- Characteristic class. --- Chern class. --- Clifford algebra. --- Coefficient. --- Cohomology. --- Compact operator. --- Completely positive map. --- Contact geometry. --- Continuous function. --- Corollary. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential operator. --- Dimension (vector space). --- Dimension function. --- Dimension. --- Direct integral. --- Direct proof. --- Eigenvalues and eigenvectors. --- Equivalence class. --- Equivalence relation. --- Essential spectrum. --- Euler class. --- Exact sequence. --- Existential quantification. --- Fiber bundle. --- Finite group. --- Fredholm operator. --- Fredholm. --- Free abelian group. --- Fundamental class. --- Fundamental group. --- Hardy space. --- Hermann Weyl. --- Hilbert space. --- Homological algebra. --- Homology (mathematics). --- Homomorphism. --- Homotopy. --- Ideal (ring theory). --- Inner automorphism. --- Irreducible representation. --- K-group. --- Lebesgue space. --- Locally compact group. --- Maximal compact subgroup. --- Michael Atiyah. --- Monomorphism. --- Morphism. --- Natural number. --- Natural transformation. --- Normal operator. --- Operator algebra. --- Operator norm. --- Operator theory. --- Orthogonal group. --- Pairing. --- Piecewise linear manifold. --- Polynomial. --- Pontryagin class. --- Positive and negative parts. --- Positive map. --- Pseudo-differential operator. --- Quaternion. --- Quotient algebra. --- Self-adjoint operator. --- Self-adjoint. --- Simply connected space. --- Smooth structure. --- Special case. --- Stein manifold. --- Strong topology. --- Subalgebra. --- Subgroup. --- Subset. --- Summation. --- Tangent bundle. --- Theorem. --- Todd class. --- Topology. --- Torsion subgroup. --- Unitary operator. --- Universal coefficient theorem. --- Variable (mathematics). --- Von Neumann algebra. --- Homology theory. --- Homologie --- K-théorie --- C etoile-algebres

Listing 11 - 20 of 24 << page
of 3
>>
Sort by