Narrow your search

Library

Odisee (14)

Thomas More Kempen (14)

Thomas More Mechelen (14)

UCLL (14)

VIVES (14)

LUCA School of Arts (9)

ULiège (9)

KU Leuven (8)

ULB (8)

VUB (7)

More...

Resource type

book (21)


Language

English (20)

French (1)


Year
From To Submit

2022 (5)

2021 (1)

2020 (5)

2018 (1)

2017 (2)

More...
Listing 11 - 20 of 21 << page
of 3
>>
Sort by

Book
Beginning Apache Spark Using Azure Databricks : Unleashing Large Cluster Analytics in the Cloud
Author:
ISBN: 1484257812 1484257804 Year: 2020 Publisher: Berkeley, CA : Apress : Imprint: Apress,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloud Get started with Databricks using SQL and Python in either Microsoft Azure or AWS Understand the underlying technology, and how the cloud and Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free This book is for data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation. Robert Ilijason is a 20-year veteran in the business intelligence (BI) segment. He has worked as a contractor for some of Europe’s biggest companies and has conducted large-scale analytics projects within the areas of retail, telecom, banking, government, and more. Robert has seen his share of analytic trends come and go over the years, but unlike most of them, he strongly believes that Apache Spark in the cloud, especially with Azure Databricks, is a game changer.


Book
Spark cookbook : over 60 recipes on spark, covering spark core, spark SQL, spark streaming, MLlib, and GraphX libraries
Authors: --- --- --- ---
ISBN: 9781783987078 1783987073 9781783987061 1783987065 Year: 2015 Publisher: Birmingham, England ; Mumbai, [India] : Packt Publishing,


Book
Big Data SMACK : A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka
Authors: ---
ISBN: 1484221745 1484221753 Year: 2016 Publisher: Berkeley, CA : Apress : Imprint: Apress,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Integrate full-stack open-source fast data pipeline architecture and choose the correct technology—Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)—in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each technology and, more importantly, how to integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by each technology. This book covers the five main concepts of data pipeline architecture and how to integrate, replace, and reinforce every layer: The engine: Apache Spark The container: Apache Mesos The model: Akka< The storage: Apache Cassandra The broker: Apache Kafka.


Book
Pro Spark Streaming : The Zen of Real-Time Analytics Using Apache Spark
Author:
ISBN: 1484214803 148421479X Year: 2016 Publisher: Berkeley, CA : Apress : Imprint: Apress,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in Pro Spark Streaming include social media, the sharing economy, finance, online advertising, telecommunication, and IoT. In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming. What You'll Learn Discover Spark Streaming application development and best practices Work with the low-level details of discretized streams Optimize production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios Ingest data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver Integrate and couple with HBase, Cassandra, and Redis Take advantage of design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model Implement real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR Use streaming machine learning, predictive analytics, and recommendations Mesh batch processing with stream processing via the Lambda architecture Who This Book Is For Data scientists, big data experts, BI analysts, and data architects.


Book
Practical Apache Spark : Using the Scala API
Authors: ---
ISBN: 1484236521 1484236513 Year: 2018 Publisher: Berkeley, CA : Apress : Imprint: Apress,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Work with Apache Spark using Scala to deploy and set up single-node, multi-node, and high-availability clusters. This book discusses various components of Spark such as Spark Core, DataFrames, Datasets and SQL, Spark Streaming, Spark MLib, and R on Spark with the help of practical code snippets for each topic. Practical Apache Spark also covers the integration of Apache Spark with Kafka with examples. You’ll follow a learn-to-do-by-yourself approach to learning – learn the concepts, practice the code snippets in Scala, and complete the assignments given to get an overall exposure. On completion, you’ll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You’ll also become familiar with machine learning algorithms with real-time usage. You will: Discover the functional programming features of Scala Understand the complete architecture of Spark and its components Integrate Apache Spark with Hive and Kafka Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries Work with different machine learning concepts and libraries using Spark's MLlib packages.


Book
Data Science in Healthcare
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management.


Book
Data Science in Healthcare
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management.


Book
Data Science in Healthcare
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management.


Book
Artificial Intelligence Applications to Smart City and Smart Enterprise
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Smart cities operate under more resource-efficient management and economy than ordinary cities. As such, advanced business models have emerged around smart cities, which led to the creation of smart enterprises and organizations that depend on advanced technologies. This book includes 21 selected and peer-reviewed articles contributed in the wide spectrum of artificial intelligence applications to smart cities. Chapters refer to the following areas of interest: vehicular traffic prediction, social big data analysis, smart city management, driving and routing, localization, safety, health, and life quality.

Keywords

Information technology industries --- spatio-temporal --- residual networks --- bus traffic flow prediction --- advance rate --- shield performance --- principal component analysis --- ANFIS-GA --- tunnel --- online learning --- extreme learning machine --- cyclic dynamics --- transfer learning --- knowledge preservation --- Feature Adaptive --- optimization --- Bacterial Foraging algorithm --- Swarm Intelligence algorithm --- Isolated Microgrid --- traffic surveillance video --- state analysis --- Grassmann manifold --- neural network --- machine-learning --- quality of life --- Better Life Index --- bagging --- ensemble learning --- pedestrian attributes --- surveillance image --- semantic attributes recognition --- multi-label learning --- large-scale database --- traffic congestion detection --- minimizing traffic congestion --- traffic prediction --- deep learning --- urban mobility --- ITS --- Vehicle-to-Infrastructure --- neural networks --- LSTM --- embeddings --- trajectories --- motion behavior --- smart tourism --- driver’s behavior detection --- texting and driving --- convolutional neural network --- smart car --- smart cities --- smart infotainment --- driver distraction --- cameras --- convolution --- detection --- image recognition --- DSS --- diabetes prediction --- homecare assistance information system --- muti-attribute analysis --- artificial training dataset --- machine learning --- big data --- data analysis --- sensors --- Internet of Things --- vehicular networks --- VDTN --- routing --- message scheduling --- traffic flow prediction --- wavenet --- TrafficWave --- RNN --- GRU --- SAEs --- risk assessment --- neural architecture search --- recurrent neural network --- automated driving vehicle --- decision support system --- artificial intelligence --- disaster management --- Smart city --- program management --- integrated model --- smart city --- intelligence transportation system --- computer vision --- potential pedestrian safety --- data mining --- healthcare --- Apache Spark --- disease detection --- symptoms detection --- Arabic language --- Saudi dialect --- Twitter --- high performance computing (HPC) --- spatial-temporal dependencies --- traffic periodicity --- graph convolutional network --- traffic speed prediction --- vehicular traffic --- surveillance video --- big data analysis --- autonomous driving --- life quality --- pattern recognition


Book
Artificial Intelligence Applications to Smart City and Smart Enterprise
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Smart cities operate under more resource-efficient management and economy than ordinary cities. As such, advanced business models have emerged around smart cities, which led to the creation of smart enterprises and organizations that depend on advanced technologies. This book includes 21 selected and peer-reviewed articles contributed in the wide spectrum of artificial intelligence applications to smart cities. Chapters refer to the following areas of interest: vehicular traffic prediction, social big data analysis, smart city management, driving and routing, localization, safety, health, and life quality.

Keywords

spatio-temporal --- residual networks --- bus traffic flow prediction --- advance rate --- shield performance --- principal component analysis --- ANFIS-GA --- tunnel --- online learning --- extreme learning machine --- cyclic dynamics --- transfer learning --- knowledge preservation --- Feature Adaptive --- optimization --- Bacterial Foraging algorithm --- Swarm Intelligence algorithm --- Isolated Microgrid --- traffic surveillance video --- state analysis --- Grassmann manifold --- neural network --- machine-learning --- quality of life --- Better Life Index --- bagging --- ensemble learning --- pedestrian attributes --- surveillance image --- semantic attributes recognition --- multi-label learning --- large-scale database --- traffic congestion detection --- minimizing traffic congestion --- traffic prediction --- deep learning --- urban mobility --- ITS --- Vehicle-to-Infrastructure --- neural networks --- LSTM --- embeddings --- trajectories --- motion behavior --- smart tourism --- driver’s behavior detection --- texting and driving --- convolutional neural network --- smart car --- smart cities --- smart infotainment --- driver distraction --- cameras --- convolution --- detection --- image recognition --- DSS --- diabetes prediction --- homecare assistance information system --- muti-attribute analysis --- artificial training dataset --- machine learning --- big data --- data analysis --- sensors --- Internet of Things --- vehicular networks --- VDTN --- routing --- message scheduling --- traffic flow prediction --- wavenet --- TrafficWave --- RNN --- GRU --- SAEs --- risk assessment --- neural architecture search --- recurrent neural network --- automated driving vehicle --- decision support system --- artificial intelligence --- disaster management --- Smart city --- program management --- integrated model --- smart city --- intelligence transportation system --- computer vision --- potential pedestrian safety --- data mining --- healthcare --- Apache Spark --- disease detection --- symptoms detection --- Arabic language --- Saudi dialect --- Twitter --- high performance computing (HPC) --- spatial-temporal dependencies --- traffic periodicity --- graph convolutional network --- traffic speed prediction --- vehicular traffic --- surveillance video --- big data analysis --- autonomous driving --- life quality --- pattern recognition

Listing 11 - 20 of 21 << page
of 3
>>
Sort by