Choose an application
Les petites protéines GTPases Rab5a et Rab7 sont des régulateurs agissant en tandem de l’endocytose, et de la dégradation de la thyroglobuline iodée. Nous avons étudié l’expression du gène codant l’isoforme Rab5a et Rab7 dans le tissu de quatre nodules autonomes ou chauds, caractérisés par une hyperfixation de l’iode et une synthèse accrue des hormones thyroïdiennes, et dans le tissu périnodulaire mais au repos correspondant. L’étude a également examiné un nodule froid dépourvu d’activité sécrétoire et son tissu périnodulaire normal.
après mise au point de la technique de PCR en temps-réel pur la quantification de l’ADNc de Rab5a et de Rab7, nous concluons que dans le tissu autonome, l’augmentation de l’expression des protéines Rab5a et Rab7 est dû à une régulation positive au niveau de l’expression de l’ARN messager, résultat probable de la stimulation constitutive de ce tissu par le TSH. Par contre, dans le nodule froid, l’expression des protéines ainsi que de l’ARNm de Rab5a et Rab7 ne semble pas varier.
La deuxième partie de ce travail a porté sur l’étude d’un autre régulateur possible de la dégradation de la thyroglobuline iodée dans les lysosomes, la cathepsine D.
Les résultats en « western blot » montrent qu’il y a une augmentation significative aussi bien de l’expression de la forme mature de la protéine que de l’activité enzymatique de cet enzyme dans le tissu hyperactif comparé au tissu mis au repos. La comparaison des résultats obtenues par ces deux méthodes d’investigation montre que dans le nodule autonome, la contenu en protéine est plus important que ne l’est l’activité enzymatique. Après fractionnement subcellulaire, suivi d’une équilibration isopycnique de la fraction MLP en gradient de Percoll®, nous observons que dans les fractions de densités correspondant aux endosomes tardifs, se trouvent une forme mature de la cathepsine D ne possédant pas d’activité. Ce résultat indique la présence dans le tissu hyperfonctionnel d’une maturation prématurée de l’enzyme au niveau d’une compartiment vésiculaire dont le pH serait insuffisant pour révéler l’activité enzymatique.
l’analyse des fractionnements de sept paires de tissus nodulaire et périnodulaire, montre une relocalisation de l’enzyme de la fraction soluble (S) vers la fraction particulaire (MLP). L’enzyme est donc transporté vers le compartiment où son rôle est le plus efficace. Enfin, il existe une corrélation positive entre l’endocytose apicale de la thyroglobuline, et le contenu de la glande en cathepsine D active.
rab5 GTP-Binding Proteins --- Adenoma --- Blotting, Western --- Thyroid Gland
Choose an application
Acromegaly --- Adenoma --- Pituitary Neoplasms --- Growth Hormone --- physiopathology --- secretion --- metabolism
Choose an application
Pituitary gland --- Tumors. --- Pituitary Neoplasms --- Pituitary Hormones --- Hormones, Pituitary --- Cancer of Pituitary --- Cancer of the Pituitary --- Pituitary Adenoma --- Pituitary Carcinoma --- Pituitary Tumors --- Pituitary Cancer --- Adenoma, Pituitary --- Adenomas, Pituitary --- Cancer, Pituitary --- Cancers, Pituitary --- Carcinoma, Pituitary --- Carcinomas, Pituitary --- Neoplasm, Pituitary --- Neoplasms, Pituitary --- Pituitary Adenomas --- Pituitary Cancers --- Pituitary Carcinomas --- Pituitary Neoplasm --- Pituitary Tumor --- Tumor, Pituitary --- Tumors, Pituitary --- Adenoma, Basophil --- Adenoma, Chromophobe --- Adenoma, Acidophil
Choose an application
Pituitary Neoplasms. --- Cancer of Pituitary --- Cancer of the Pituitary --- Pituitary Adenoma --- Pituitary Carcinoma --- Pituitary Tumors --- Pituitary Cancer --- Adenoma, Pituitary --- Adenomas, Pituitary --- Cancer, Pituitary --- Cancers, Pituitary --- Carcinoma, Pituitary --- Carcinomas, Pituitary --- Neoplasm, Pituitary --- Neoplasms, Pituitary --- Pituitary Adenomas --- Pituitary Cancers --- Pituitary Carcinomas --- Pituitary Neoplasm --- Pituitary Tumor --- Tumor, Pituitary --- Tumors, Pituitary --- Adenoma, Basophil --- Adenoma, Chromophobe --- Adenoma, Acidophil --- Pituitary gland --- Tumors.
Choose an application
The adrenal gland plays essential roles in the control of body homeostasis, stress and immune responses. The adrenal cortex represents up to 90% of the gland and is specialised in the production of mineralocorticoids, glucocorticoids and adrenal androgens. This production is tightly coordinated and results from a unique zonal organisation. Although our knowledge of the molecular mechanisms controlling adrenal steroidogenesis is quite extensive, for decades, the mechanisms of adrenal cortex development, cellular homeostasis and renewal have remained elusive. The advent of new high-throughput technologies and sophisticated genetic approaches has brought tremendous progress in our understanding of how the adrenal cortex achieves and maintains its particular organisation. The aim of this Frontiers in Endocrinology Topic is to provide readers with a snapshot of our current knowledge on adrenal physiology and how deregulations of these processes result in adrenal diseases. This includes but is not limited to, basic research on adrenal development, cell lineage identification, progenitor cells, tissue renewal, control of differentiation and zonation and clinical research on the identification of disease-related genes.
Adrenal cortex --- Adrenal cortex. --- development --- adrenal --- Disease --- Hyperplasia --- Insufficiency --- zonation --- Physiology --- Adenoma --- Cancer --- Diseases. --- development --- adrenal --- Disease --- Hyperplasia --- Insufficiency --- zonation --- Physiology --- Adenoma --- Cancer
Choose an application
HYPOTHALAMO-HYPOPHYSEAL SYSTEM --- PITUITARY-ADRENAL SYSTEM --- GONADORELIN --- AMENORRHEA --- POLYCYSTIC OVARY SYNDROME --- HYPOGONADISM --- ADENOMA --- HYPOTHALAMO-HYPOPHYSEAL SYSTEM --- PITUITARY-ADRENAL SYSTEM --- GONADORELIN --- AMENORRHEA --- POLYCYSTIC OVARY SYNDROME --- HYPOGONADISM --- ADENOMA
Choose an application
Prolactinoma --- Microprolactinoma --- Prolactin secreting pituitary tumors --- Adenoma --- Neuroendocrine tumors --- Pituitary gland --- Tumors
Choose an application
The adrenal gland plays essential roles in the control of body homeostasis, stress and immune responses. The adrenal cortex represents up to 90% of the gland and is specialised in the production of mineralocorticoids, glucocorticoids and adrenal androgens. This production is tightly coordinated and results from a unique zonal organisation. Although our knowledge of the molecular mechanisms controlling adrenal steroidogenesis is quite extensive, for decades, the mechanisms of adrenal cortex development, cellular homeostasis and renewal have remained elusive. The advent of new high-throughput technologies and sophisticated genetic approaches has brought tremendous progress in our understanding of how the adrenal cortex achieves and maintains its particular organisation. The aim of this Frontiers in Endocrinology Topic is to provide readers with a snapshot of our current knowledge on adrenal physiology and how deregulations of these processes result in adrenal diseases. This includes but is not limited to, basic research on adrenal development, cell lineage identification, progenitor cells, tissue renewal, control of differentiation and zonation and clinical research on the identification of disease-related genes.
Adrenal cortex --- Adrenal cortex. --- Diseases. --- development --- adrenal --- Disease --- Hyperplasia --- Insufficiency --- zonation --- Physiology --- Adenoma --- Cancer
Choose an application
The adrenal gland plays essential roles in the control of body homeostasis, stress and immune responses. The adrenal cortex represents up to 90% of the gland and is specialised in the production of mineralocorticoids, glucocorticoids and adrenal androgens. This production is tightly coordinated and results from a unique zonal organisation. Although our knowledge of the molecular mechanisms controlling adrenal steroidogenesis is quite extensive, for decades, the mechanisms of adrenal cortex development, cellular homeostasis and renewal have remained elusive. The advent of new high-throughput technologies and sophisticated genetic approaches has brought tremendous progress in our understanding of how the adrenal cortex achieves and maintains its particular organisation. The aim of this Frontiers in Endocrinology Topic is to provide readers with a snapshot of our current knowledge on adrenal physiology and how deregulations of these processes result in adrenal diseases. This includes but is not limited to, basic research on adrenal development, cell lineage identification, progenitor cells, tissue renewal, control of differentiation and zonation and clinical research on the identification of disease-related genes.
Adrenal cortex --- Adrenal cortex. --- Diseases. --- development --- adrenal --- Disease --- Hyperplasia --- Insufficiency --- zonation --- Physiology --- Adenoma --- Cancer
Choose an application
Galectin 1 --- Galectin 3 --- Carcinoma --- Adenoma --- Antigens, Differentiation --- Neoplasm Proteins --- metabolism --- metabolism --- metabolism --- metabolism