Choose an application
Second order linear parabolic and elliptic equations arise frequently in mathematics and other disciplines. For example parabolic equations are to be found in statistical mechanics and solid state theory, their infinite dimensional counterparts are important in fluid mechanics, mathematical finance and population biology, whereas nonlinear parabolic equations arise in control theory. Here the authors present a state of the art treatment of the subject from a new perspective. The main tools used are probability measures in Hilbert and Banach spaces and stochastic evolution equations. There is then a discussion of how the results in the book can be applied to control theory. This area is developing very rapidly and there are numerous notes and references that point the reader to more specialised results not covered in the book. Coverage of some essential background material will help make the book self-contained and increase its appeal to those entering the subject.
Differential equations, Partial. --- Hilbert space. --- Banach spaces --- Hyperspace --- Inner product spaces --- Partial differential equations --- Differential equations, Partial --- Hilbert space --- 517.95 --- 517.95 Partial differential equations
Choose an application
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase.
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application