Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This special issue aims to contribute to the climate actions which called for the need to address Greenhouse Gas (GHG) emissions, keeping global warming to well below 2°C through various means, including accelerating renewables, clean fuels, and clean technologies into the entire energy system. As long as fossil fuels (coal, gas and oil) are still used in the foreseeable future, it is vital to ensure that these fossil fuels are used cleanly through abated technologies. Financing the clean and energy transition technologies is vital to ensure the smooth transition towards net zero emission by 2050 or beyond. The lack of long‐term financing, the low rate of return, the existence of various risks, and the lack of capacity of market players are major challenges to developing sustainable energy systems.This special collected 17 high-quality empirical studies that assess the challenges for developing secure and sustainable energy systems and provide practical policy recommendations. The editors of this special issue wish to thank the Economic Research Institute for ASEAN and East Asia (ERIA) for funding several papers that were published in this special issue.
Research & information: general --- Physics --- industrial energy intensity --- pollution emission intensity --- quantile DID method --- Beijing–Tianjin–Hebei coordinated development --- China --- environmental Kuznets curve --- CO2 emission --- energy efficiency --- economic growth --- panel ARDL --- DEA --- energy transition --- renewables --- hydrogen --- fossil fuels --- emissions --- FDIA --- blockchain --- data exchanging --- under-operating agents --- ISO --- electricity market --- Saudi Arabia --- energy sustainability --- world energy trilemma index --- Bayesian Belief Network --- green technology --- sustainability --- climate change --- Southeast Asia --- energy policy --- high-efficiency --- low-emission --- carbon dioxide emissions --- carbon pricing --- subcritical --- desulphurization --- denitrification --- cost–benefit analysis --- levelized cost of electricity --- energy supply security --- energy dependence --- energy diversity --- business as usual (BAU) --- Alternative Policy Scenarios (APSs) --- clean technologies --- and resiliency --- multi plant firms --- environmental assessment --- local-global performance --- wind energy --- power trade --- counterfactual scenario --- ASEAN --- natural gas --- multi-objective --- goal programming --- optimization --- allocation --- connectivity --- energy infrastructure --- Mekong Subregion --- green bonds --- post-COVID-19 era --- Asia and the Pacific --- green finance --- sustainable development --- thermal energy storage (TES) --- latent heat thermal energy storage (LHTES) --- circular economy --- environmental sustainability --- life cycle assessment (LCA) --- physico-chemical characterization --- Coats–Redfern model --- flammability --- integral model --- iso-conversional --- wind farm site selection --- multi-criteria decision-making system --- Analytic Hierarchy Process --- Semnan province --- ArcGIS
Choose an application
Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.
artificial neural network --- n/a --- corrosion --- inclusion control --- steel-making --- simulation --- liquid steel --- phosphate capacity --- slag --- hydrogen --- TG analysis --- surface roughness --- iron sulfate --- shot peening --- refining kinetics --- iso-conversional method --- oxygen blast furnace --- Barkhausen noise --- gas flow rate --- ductile cast iron --- toughness --- self-reduction briquette --- Mg deoxidation --- phosphorus distribution ratio --- iron oxides --- phase analysis --- desiliconisation --- solid flow --- CaO/Al2O3 ratio --- surface depression --- carbothermal reduction --- rotary hearth furnace --- torrefied biomass --- hot metal pre-treatment --- inclusions --- microwaves --- ironmaking --- reactivity --- CaO–based slags --- high-aluminum iron ore --- oxides --- HPSR --- internal crack --- fluorapatite --- crystallization rate --- COREX --- liquid area --- Al addition --- Wilcox–Swailes coefficient --- plasma arc --- evaluation of coupling relationship --- penetration theory --- silicate crystals --- ionization degree --- pellet size --- prediction model --- continuous casting --- direct element method --- modified NPL model --- slag film --- volatile matter --- crystallite size --- Al-TRIP steel --- viscosity --- anosovite crystals --- slag formation --- CO2 emissions --- integrated steel plant --- flow pattern --- high-heat-input welding --- dephosphorisation --- copper stave --- direct reduction --- shrinkage --- Cr recovery --- chemical composition --- high speed steel --- material flow --- 33MnCrTiB --- gas-based reduction --- converter --- bio-coal --- flat steel --- sulfur distribution ratio --- cold experiment --- secondary refining process --- re-oxidation --- vaporization dephosphorization --- sulfide capacity --- electroslag cladding --- hydrogen attack --- oxygen steelmaking --- non-metallic inclusions --- cracks --- non-contact measurement --- energy consumption --- high-manganese iron ore --- non-metallic inclusion --- Ca deoxidation --- Ca-treatment --- compressive strength (CS) --- oil-pipeline steel --- thermal treatment --- carbon monoxide --- composite roll --- crystallization behaviors --- devolatilization --- carbon-saturated iron --- steelmaking factory --- slag crust --- combustion --- high heat input welding --- ore-carbon briquette --- activation energy --- flow velocity --- kinetics --- hydrogen plasma --- casting speed --- solid and gaseous oxygen --- hercynite --- low fluorine --- iron ore pellets --- fayalite --- heat-affected zone --- CO–CO2 atmosphere --- and nitrogen --- smelting reduction --- high-phosphorus iron ore --- iron oxide --- mold flux --- BaO --- intragranular acicular ferrite --- carbon composite pellet --- electrolytic extraction --- iron ore --- carbon dioxide --- agglomerate --- vanadium titano-magnetite --- emission spectrum --- static process model --- concentrate --- structure --- titanium slag --- bonding interface --- fork --- blast furnace --- reaction mechanism --- reduction --- synergistic reduction --- injection --- principal component analysis --- ultrafine particles exposure --- CaO-based slags --- Wilcox-Swailes coefficient --- CO-CO2 atmosphere
Listing 1 - 2 of 2 |
Sort by
|