Listing 1 - 10 of 20 | << page >> |
Sort by
|
Choose an application
Choose an application
Calculus. --- Analysis (Mathematics) --- Fluxions (Mathematics) --- Infinitesimal calculus --- Limits (Mathematics) --- Mathematical analysis --- Functions --- Geometry, Infinitesimal
Choose an application
Choose an application
Choose an application
Choose an application
Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.
Choose an application
The theory of modern dynamical systems dates back to 1890 with studies by Poincaré on celestial mechanics. The tradition was continued by Birkhoff in the United States with his pivotal work on periodic orbits, and by the Moscow School in Russia (Liapunov, Andronov, Pontryagin). In the 1960s the field was revived by the emergence of the theory of chaotic attractors, and in modern years by accurate computer simulations. This book provides an overview of recent developments in the theory of dynamical systems, presenting some significant advances in the definition of new models, computer algorithms, and applications. Researchers, engineers and graduate students in both pure and applied mathematics will benefit from the chapters collected in this volume.
Choose an application
The theory of modern dynamical systems dates back to 1890 with studies by Poincaré on celestial mechanics. The tradition was continued by Birkhoff in the United States with his pivotal work on periodic orbits, and by the Moscow School in Russia (Liapunov, Andronov, Pontryagin). In the 1960s the field was revived by the emergence of the theory of chaotic attractors, and in modern years by accurate computer simulations. This book provides an overview of recent developments in the theory of dynamical systems, presenting some significant advances in the definition of new models, computer algorithms, and applications. Researchers, engineers and graduate students in both pure and applied mathematics will benefit from the chapters collected in this volume.
Choose an application
Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.
Choose an application
Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.
Listing 1 - 10 of 20 | << page >> |
Sort by
|