Listing 1 - 10 of 126 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Probability theory has been extraordinarily successful at describing a variety of phenomena, from the behaviour of gases to the transmission of messages, and is, besides, a powerful tool with applications throughout mathematics. At its heart are a number of concepts familiar in one guise or another to many: Gauss' bell-shaped curve, the law of averages, and so on, concepts that crop up in so many settings they are in some sense universal. This universality is predicted by probability theory to a remarkable degree. This book explains that theory and investigates its ramifications. Assuming a good working knowledge of basic analysis, real and complex, the author maps out a route from basic probability, via random walks, Brownian motion, the law of large numbers and the central limit theorem, to aspects of ergodic theorems, equilibrium and nonequilibrium statistical mechanics, communication over a noisy channel, and random matrices. Numerous examples and exercises enrich the text.
Choose an application
The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,∞)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography
Choose an application
Probability theory --- Limit theorems (Probability theory) --- Congresses --- -519.214 --- Probabilities --- Limit theorems --- 519.214 Limit theorems --- 519.214 --- Limit theorems (Probability theory) - Congresses
Choose an application
Choose an application
Choose an application
Choose an application
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
Choose an application
Stochastic processes --- 519.214 --- Limit theorems --- Theses --- 519.214 Limit theorems
Listing 1 - 10 of 126 | << page >> |
Sort by
|