Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Welding remains one of the most studied manufacturing processes worldwide. It has always assumed a vital importance in terms of research, and the market demand for increasingly complex solutions has kept the search for new solutions around welding more and more alive. This book describes, in 14 chapters, recent investigations around various welding processes, showing new developments in important areas, such as biomedicine or the automotive industry. Following the current trend, several developments around the friction stir welding process are also described. However, other processes are also studied, and new interesting developments are presented. Problems normally felt in welding, such as the installation of internal stresses or the generation of defects are also studied, and very interesting solutions are provided. Thus, this book is of particular importance for a very wide audience, ranging from the technician who is curious to want to know more and more, to the professor who seeks the latest developments in the matter to prepare his classes.
History of engineering & technology --- spot welding --- hot-stamped hardened steel --- microstructure --- martensite --- bainite --- friction stir welding --- aluminium alloys --- forced air cooling --- microstructures --- tensile strength --- hardness distribution --- ferritic stainless steel --- cerium --- solidification crack --- Trans-varestraint test --- beryllium-copper alloy --- mechanical properties --- post-weld heat treatment --- high-power ultrasonic welding --- interface --- magnesium --- cu interlayer --- intermetallic compound --- material flow --- finite element model --- temperature field --- welding defects --- brazing --- titanium --- alumina --- interfacial microstructure --- FSSW --- dissimilar metals --- interface behavior --- impact properties --- residual stresses --- neutron diffraction --- hardness --- precipitation --- wear-resistant martensitic steel --- submerged arc welding (SAW) --- heat treatment --- structures --- hardness changes --- Hardox Extreme steel --- bobbin friction stir welding --- materials flow --- metallography --- AA6082-T6 --- weld defect --- aluminum alloy --- heterogeneity --- mechanical --- P91 steel --- heat-resistant steels --- welding --- PWHT --- welds characterization --- heat-treatment processing time --- sustainability --- ultrasonic vibration --- dissimilar metal --- semi-solid status --- microstructure evolution
Choose an application
Welding remains one of the most studied manufacturing processes worldwide. It has always assumed a vital importance in terms of research, and the market demand for increasingly complex solutions has kept the search for new solutions around welding more and more alive. This book describes, in 14 chapters, recent investigations around various welding processes, showing new developments in important areas, such as biomedicine or the automotive industry. Following the current trend, several developments around the friction stir welding process are also described. However, other processes are also studied, and new interesting developments are presented. Problems normally felt in welding, such as the installation of internal stresses or the generation of defects are also studied, and very interesting solutions are provided. Thus, this book is of particular importance for a very wide audience, ranging from the technician who is curious to want to know more and more, to the professor who seeks the latest developments in the matter to prepare his classes.
spot welding --- hot-stamped hardened steel --- microstructure --- martensite --- bainite --- friction stir welding --- aluminium alloys --- forced air cooling --- microstructures --- tensile strength --- hardness distribution --- ferritic stainless steel --- cerium --- solidification crack --- Trans-varestraint test --- beryllium-copper alloy --- mechanical properties --- post-weld heat treatment --- high-power ultrasonic welding --- interface --- magnesium --- cu interlayer --- intermetallic compound --- material flow --- finite element model --- temperature field --- welding defects --- brazing --- titanium --- alumina --- interfacial microstructure --- FSSW --- dissimilar metals --- interface behavior --- impact properties --- residual stresses --- neutron diffraction --- hardness --- precipitation --- wear-resistant martensitic steel --- submerged arc welding (SAW) --- heat treatment --- structures --- hardness changes --- Hardox Extreme steel --- bobbin friction stir welding --- materials flow --- metallography --- AA6082-T6 --- weld defect --- aluminum alloy --- heterogeneity --- mechanical --- P91 steel --- heat-resistant steels --- welding --- PWHT --- welds characterization --- heat-treatment processing time --- sustainability --- ultrasonic vibration --- dissimilar metal --- semi-solid status --- microstructure evolution
Choose an application
Welding remains one of the most studied manufacturing processes worldwide. It has always assumed a vital importance in terms of research, and the market demand for increasingly complex solutions has kept the search for new solutions around welding more and more alive. This book describes, in 14 chapters, recent investigations around various welding processes, showing new developments in important areas, such as biomedicine or the automotive industry. Following the current trend, several developments around the friction stir welding process are also described. However, other processes are also studied, and new interesting developments are presented. Problems normally felt in welding, such as the installation of internal stresses or the generation of defects are also studied, and very interesting solutions are provided. Thus, this book is of particular importance for a very wide audience, ranging from the technician who is curious to want to know more and more, to the professor who seeks the latest developments in the matter to prepare his classes.
History of engineering & technology --- spot welding --- hot-stamped hardened steel --- microstructure --- martensite --- bainite --- friction stir welding --- aluminium alloys --- forced air cooling --- microstructures --- tensile strength --- hardness distribution --- ferritic stainless steel --- cerium --- solidification crack --- Trans-varestraint test --- beryllium-copper alloy --- mechanical properties --- post-weld heat treatment --- high-power ultrasonic welding --- interface --- magnesium --- cu interlayer --- intermetallic compound --- material flow --- finite element model --- temperature field --- welding defects --- brazing --- titanium --- alumina --- interfacial microstructure --- FSSW --- dissimilar metals --- interface behavior --- impact properties --- residual stresses --- neutron diffraction --- hardness --- precipitation --- wear-resistant martensitic steel --- submerged arc welding (SAW) --- heat treatment --- structures --- hardness changes --- Hardox Extreme steel --- bobbin friction stir welding --- materials flow --- metallography --- AA6082-T6 --- weld defect --- aluminum alloy --- heterogeneity --- mechanical --- P91 steel --- heat-resistant steels --- welding --- PWHT --- welds characterization --- heat-treatment processing time --- sustainability --- ultrasonic vibration --- dissimilar metal --- semi-solid status --- microstructure evolution --- spot welding --- hot-stamped hardened steel --- microstructure --- martensite --- bainite --- friction stir welding --- aluminium alloys --- forced air cooling --- microstructures --- tensile strength --- hardness distribution --- ferritic stainless steel --- cerium --- solidification crack --- Trans-varestraint test --- beryllium-copper alloy --- mechanical properties --- post-weld heat treatment --- high-power ultrasonic welding --- interface --- magnesium --- cu interlayer --- intermetallic compound --- material flow --- finite element model --- temperature field --- welding defects --- brazing --- titanium --- alumina --- interfacial microstructure --- FSSW --- dissimilar metals --- interface behavior --- impact properties --- residual stresses --- neutron diffraction --- hardness --- precipitation --- wear-resistant martensitic steel --- submerged arc welding (SAW) --- heat treatment --- structures --- hardness changes --- Hardox Extreme steel --- bobbin friction stir welding --- materials flow --- metallography --- AA6082-T6 --- weld defect --- aluminum alloy --- heterogeneity --- mechanical --- P91 steel --- heat-resistant steels --- welding --- PWHT --- welds characterization --- heat-treatment processing time --- sustainability --- ultrasonic vibration --- dissimilar metal --- semi-solid status --- microstructure evolution
Choose an application
The papers collected in this special issue clearly reflect the modern research trends in materials science. These fields of specific attention are high-Mn TWIP steels, high-Cr heat resistant steels, aluminum alloys, ultrafine grained materials including those developed by severe plastic deformation, and high-entropy alloys. The major portion of the collected papers is focused on the mechanisms of microstructure evolution and the mechanical properties of metallic materials subjected to various thermo-mechanical, deformation or heat treatments. Another large portion of the studies is aimed on the elaboration of alloying design of advanced steels and alloys. The changes in phase content, transformation and particle precipitation and their effect on the properties are also broadly presented in this collection, including the microstructure/property changes caused by irradiation.
n/a --- microstructure --- high-pressure torsion --- electron backscattered diffraction --- grain boundary engineering --- strengthening mechanism --- precipitation --- recrystallization --- bimodal ferrite steel --- transmission electron microscopy (TEM) --- hot compression --- metal–matrix composite --- columnar grain --- shape memory alloy --- hardness --- structural steel plate --- dynamic recovery --- nonmetallic inclusions --- SEM --- Cu-Al-Mn --- ferritic steel --- strain rate --- strengthening --- elastocaloric effect --- Mg–Sm–Zn–Zr --- dynamic recrystallization --- growth rate --- corrosion resistance --- lead-free solder --- high-Mn TWIP steel --- Sn-8.0Sb-3.0Ag --- SDSS --- measuring temperature --- texture --- martensitic steels --- dynamic precipitation --- nanoindentation --- Al-Fe-Si-Zr system --- low-temperature --- orientation relationship --- M23C6 --- PWHT --- grain refinement --- force peak --- aging --- cycle time --- amorphization --- Al metal matrix composites --- aluminum alloys --- in situ tensile testing --- microstructure evolution --- Cu-Cr-Zr --- irradiation --- EBSD --- welded rotor --- ?-phase --- high-entropy alloys --- creep --- martensitic expansion --- super duplex stainless steel --- mechanical properties --- high-Mn steel --- ion irradiation --- austenitic 304 stainless steels --- impact toughness --- cold rolling --- ultrafine-grained microstructure --- press hardening --- mechanical property --- recovery --- annealing --- deformation twinning --- post-weld heat treatment --- rare earth control --- abnormal grain growth --- electron microscopy --- sub-merged arc welding --- M6C --- RAFM steels --- microstructure analysis --- electrical resistivity --- twinning --- Sb solder --- work hardening --- microhardness --- hot stamping --- weld metal --- electrical conductivity --- solder microstructure --- annealing twins --- metal-matrix composite --- Mg-Sm-Zn-Zr
Listing 1 - 4 of 4 |
Sort by
|